Решения к текстовым задачам на составление уравнений

Решения текстовых задач на составление уравнений будут полезными в первую очередь для школьников. Учебная программа за 9, 10 класс охватывает широкий класс задач в которых требуется определить неизвестные, составить уравнение и решить. Ниже приведена лишь малая часть возможных задач и методика их вычислений.

Пример 1. Первый велосипедист ежеминутно проезжает на 50 метров меньше чем второй, поэтому на путь 120 км он тратит на 2 часа больше чем второй. Найти скорость второго велосипедиста (в км за час).
Решение: Задача для многих тяжела, но на самом деле все просто.
Под фразой «Проезжает ежеминутно на 50 метров меньше» спрятана скорость 50 м/мин. Поскольку остальные данные в км и часах то 50 м/мин приводим к км/час.
50/1000*60=3000/1000=3 (км/ч).
Обозначим скорость второго велосипедиста через V, а время движения — t.
Умножением скорости на время движения получим путь
V*t=120.
Первый велосипедист едет медленнее, поэтому и дольше. Составляем соответствующее уравнение движения
(V-3)(t+2)=120.
Имеем систему двух уравнений с двумя неизвестными.
Из первого уравнения выразим время движения и подставим во второе
t=120/V; (V-3)(120/V+2)=120.
После умножения на V/2 и группировки подобных слагаемых можно получить такое квадратное уравнение
V^2-3V-180=0.

Вычисляем дискриминант уравнения
D=9+4*180=729=27*27

и корни
V=(3+27)/2=15;
V=(3-27)/2=-12.

Второй отвергаем, он не имеет физического смысла. Найденное значение V = 15 км/час является скоростью второго велосипедиста.
Ответ: 15 км/час.

Пример 2. Морская вода содержит 5% соли по массе. Сколько пресной воды надо добавить к 30 кг морской, чтобы концентрация соли уменьшилась на 70%?
Решение: Найдем сколько соли в 30 кг морской воды
30*5/100=1,5 (кг).
В новом растворе это составит
(100%-70%)=30% от 5%, составляем пропорции
5% – 100%
Х– 30%.
Выполняем вычисления
Х=5*30/100=150/100=1,5%.
Таким образом 1,5 кг соли соответствует 1,5% в новом растворе. Опять складываем пропорции
1,5 – 1,5% Y – 100%
.
Находим массу раствора морской воды
Y=1,5*100/1,5=100 (кг).
Вычтем масс соленой воды, чтобы найти количество пресной
100-30=70 (кг).
Ответ: 70 кг пресной воды.

Пример 3. Мотоциклист задержался у шлагбаума на 24 минуты. Увеличив после этого свою скорость на 10 километров в час он искупил опоздание на перегоне 80 км. Определить скорость мотоциклиста перед замедлением (в км в час).
Решение: Задача на составление уравнения на скорость. Обозначим начальную скорость мотоциклиста через V, а время за которое он должен был проехать через t. Есть две неизвестные, следовательно уравнений должно быть тоже 2. Согласно условию, за это время он должен был проехать 80 км.
V*t=80 (км)
.
Задержался означает, что время уменьшилось на 24 минуты. Также стоит заметить, что в подобных задачах время нужно переводить в часы или минуты (в зависимости от условия) и тогда решать. Составляем уравнение движения с учетом меньшего времени и большей скорости
(V+10)(t-24/60)=80.
Есть два уравнения для определения времени и скорости. Поскольку в задачи спрашивают скорость, то выразим время из первого уравнения и подставим во второе
t=80/V;
(V+10)(80/V-24/60)=80.

Наша цель — научить Вас составлять уравнения к задачам, из которых можно определить искомые величины.
Поэтому не вдаваясь в детали, полученное уравнение умножением на 60 * V и делением на 24 может быть сведено к следующему квадратного уравнения
V^2+10*V-2000=0.
Самостоятельно найдите дискриминант и корни уравнения. Вы должны получить значение
V=-50;
V=40.

Первое значение отбрасываем, оно не имеет физического смысла. Второе V = 40 км/час является искомой скоростью мотоциклиста.
Ответ: 40 км/час.

Пример 4. Товарный поезд задержался в пути на 12 минут, а затем на расстоянии 112 километров наверстал упущенное время, увеличив скорость на 10 км/час. Найти начальную скорость поезда (в км/час).
Решение: Имеем задачу в которой неизвестными выступают скорость поезда V и время движения t.
Поскольку задача по схеме уравнений соответствует предыдущей, то записываем два уравнения на неизвестные
V*t=112;
(V+10)*(t-12/60)=112.

Уравнения следует составлять именно в таких обозначениях. Это позволяет в простом виде выразить с первого уравнения время
t =112/V
и, подставив во второе получить уравнение только относительно скорости
(V+10)*(112/ V -12/60)=112.
Если неудачно выбрать обозначение, то можно получить уравнение на неизвестные такого плана
V*(t+12)=112;
(V+10)*t=112.

Здесь t соответствует времени после увеличения скорости на 10 км/ч, но суть не в этом. Приведенные уравнения тоже правильные, но не удобны с точки зрения вычислений.
Попробуйте решить первые два уравнения и последние и Вы поймете, что второй схемы следует избегать при составлении уравнений. Поэтому хорошо обдумывайте, какие обозначения вводить , чтобы минимизировать количество вычислений.
Полученное уравнение
(V+10)*(112/ V -12/60)=112.
сводим к квадратному уравнению (умножаем на 60*V/12)
V^2+10*V-5600=0.

Не вдаваясь в промежуточные вычисления, корнями будут
V=-80;
V=70.

В задачах такого типа всегда получим отрицательный корень (V=-80) который нужно отбросить. Скорость поезда равна 70 км/час.

Пример 5. Отправившись с автостанции на 10 минут позже, автобус ехал к первой остановки со скоростью на 16 км/час больше, чем по расписанию и приехал вовремя. Какую скорость (в км/час) должен иметь автобус по расписанию если расстояние от автостанции до первой остановки равно 16 километров?
Решение: Неизвестными выступают скорость автобуса V и время t.
Составляем уравнение, учитывая что время опоздания задано в минутах, а не часах
V * t = 16 — так должен был ехать автобус в обычном режиме;
(V + 16) (t-10/60) = 16 — уравнение движения из-за позднего отправления автобуса.
Есть два уравнения и две неизвестные.
С первого уравнения выразим время и подставим во второе
t=16/V;
(V+16)(16/V-1/6)=16.

Полученное уравнение относительно скорости сводим к квадратному (*6*V)
V^2+16*V-1536=0.

Корнями квадратного уравнения являются
V=32; V=-48.
Искомая скорость автобуса равна 32 км/час.
Ответ: 32 км/ч.

Пример 6. Водитель автомобиля остановился для замены колеса на 12 минут. После этого увеличив скорость движения на 15 км/час он искупил затраченное время на 60 километрах. С какой скоростью (в км/час) он двигался после остановки?
Решение: Алгоритм решения задачи несколько раз приводился в предыдущих примерах. Стандартно обозначаем скорость и время через V, t.
При составлении уравнения не забывайте перевести минуты в часы. Система уравнений будет иметь вид
V*t=60;
(V+15)(t-12/60)=60.

Дальнейшие манипуляции Вы также должны знать или заучить.
t=60/V;
(V+15)( 60/V -12/60)=60.

Данное уравнение можно свести к квадратному уравнению
V^2+15*V-4500=0.
Решив квадратное уравнение, получим следующие значения скоростей
V=60; V=-75.
Скорость отрицательной не бывает, поэтому единственная правильный ответ V=60 км/час.

Пример 7. Некоторое двузначное число в 4 раза больше суммы и в 3 раза больше произведение своих цифр. Найти это число.
Решение: Задача на числа занимают важное место среди задач на составление уравнений и бывают не менее интересными в построении решений чем задания на скорость. Все что нужно, это хорошо понять условие задачи. Обозначим число через ab, то есть число равно 10 * a + b. По условию составим систему уравнений
10*a+b=4*(a+b);
10*a+b=3*a*b.

Поскольку в первое уравнение неизвестные входят линейно то его расписываем и выражаем одну из неизвестных через другую
10*a+b-4*a-4*b=0;
6*a-3*b=0; b=2*a.

Подставим b = 2 * a во второе уравнение
10*a+2*a=3*a*2*a;
6*a2-12*a=0; a(a-2)=0.

Отсюда a=0; a=2. Первое значение нет смысла рассматривать, при a=2 вторая цифра равна b=2*a=2*2=4, а искомое число 24.
Ответ: число равно 24.

Пример 8. Два процессора ЭВМ, работая вместе обрабатывают данные за 8 секунд. Первый из них, работая сам может выполнить всю работу на 12 секунд быстрее другой, если тот будет работать отдельно. За сколько секунд выполнить эту работу второй процессор ЭВМ, работая самостоятельно?
Решение: Схема решения подобных задач непростая, однако на примерах усвоить методику и научиться может каждый. Обозначим работу процессоров в секунду времени через A и B, всю работу С. Слгдасно 1 условию задачи составим уравнение
(A+B)*8=C.
Дальше пусть второй B выполняет работу за t секунд, тогда первый A за (t-12) секунд. Составляем, еще 2 уравнения
A*(t-12)=C;
B*t=C.

Имеем систему из трех уравнений с 4 неизвестными. Чтобы ее решить одна переменная должна входить в конечное уравнение линейным множителем. Поскольку нас интересует время, то выразим с 2 и 3 уравнения A и В и подставим в первое. В подобных задачах поступайте аналогичным образом
B=C/t; A=C/(t-12).
C/t+C/(t-12)=C.

Как видите общая работа входит в каждый слагаемое, ее выносим за скобки как общий множитель и упрощаем
1/t+1/t-12=1.
Это конечное уравнение относительно времени, которое нужно решить. После возведения к общему знаменателю и группировка слагаемых Вы получите квадратное уравнение
t^2-28*t+96=0.
Его решениями являются значения t=4; t=24. Первое время отвергаем, оно противоречит условию задачи.
Итак второй процессор ЭВМ выполнит работу за 24 секунды.

Ссылка на основную публикацию