Однородные дифференциальные уравнения 1 порядка

Готовые ответы к примерам на однородные дифференциальные уравнения первого порядка ищут многие студенты (ДУ 1 порядка самые распространенные в обучении), далее Вы их сможете подробно разобрать. Но прежде чем перейти к рассмотрению примеров рекомендуем внимательно прочитать краткий теоретический материал.
Уравнения вида P(x,y)dx+Q(x,y)dy=0, где функции P(x,y) і Q(x,y) являются однородными функциями одного порядка называют однородным дифференциальным уравнением (ОДР).

Схема решения однородного дифференциального уравнения

1. Сначала нужно применить подстановку y=z*x, где z=z(x) – новая неизвестная функция (таким образом исходное уравнение сводится к дифференциальному уравнению с разделяющимися переменными.
2. Производная произведения равна y’=(z*x)’=z’*x+z*x’=z’*x+z или в дифференциалах dy=d(zx)=z*dx+x*dz.
3. Далее подставляем новую функцию у и ее производную y’ (или dy) в ДУ с разделяющимися переменными относительно x та z.
4. Решив дифференциальное уравнение с разделяющимися переменными, сделаем обратную замену y=z*x, поэтому z= y/х, и получим общее решение (общий интеграл) дифференциального уравнения.
5. Если задано начальное условие y(x0)=y0, то находим частное решение задачи Коши. В теории все звучит легко, однако на практике не у всех так весело получается решать дифференциальные уравнения. Поэтому для углубления знаний рассмотрим распространенные примеры. На легких задачах нет особо Вас научить, поэтому сразу перейдем к более сложным.

Вычисления однородных дифференциальных уравнений первого порядка

Пример 1. Решить дифференциальное уравнение
дифференциальное уравнение
Решение: Делим правую сторону уравнения на переменную, которая стоит множителем возле производной. В результате придем к однородного дифференциального уравнения 0 порядка
однородное дифференциальное уравнение 0 порядкф
И здесь многим пожалуй стало интересно, как определить порядок функции однородного уравнения?
Вопрос достаточно уместен, а ответ на него следующий:
в правую сторону подставляем вместо функции и аргумента значение t*x, t*y. При упрощении получают параметр «t» в определенном степени k, его и называют порядком уравнения. В нашем случае «t» сократится, что равносильно 0-м степени или нулевом порядке однородного уравнения.
Далее в правой стороне можем перейти к новой переменной y=zx; z=y/x .
При этом не забываем выразить производную «y» через производную новой переменной. По правилу части находим
производная функции
Уравнения в дифференциалах примет вид

Совместные слагаемые в правой и левой части сокращаем и переходим к дифференциальному уравнению с разделенными переменными.
дифференциальное уравнение с разделенными переменными.
Проинтегрируем обе части ДУ
интегрирования дифференциального уравнения
Для удобства дальнейших преобразований постоянную сразу вносим под логарифм
логарифмическое уравнение
По свойствам логарифмов полученное логарифмическое уравнение эквивалентно следующему

Эта запись еще не решение (ответ), необходимо вернуться к выполненной замене переменных
дифференциального уравнения с отделенными переменными.
Таким образом находят общее решение дифференциальных уравнений. Если Вы внимательно читали предыдущие уроки, то мы говорили, что схему вычисления уравнений с разделенными переменными Вы должны уметь применять свободно и такого рода уравнения придется вычислять для более сложных типов ДУ.

Пример 2. Найти интеграл дифференциального уравнения

Решение:Схема вычислений однородных и сводных к ним ДУ Вам тепер знакома. Переносим переменную в правую сторону уравнения, а также в числителе и знаменателе выносим x2, как общий множитель
дифференциальное уравнение
Таким образом получим однородное ДУ нулевого порядка.
Следующим шагом вводим замену переменных z=y/x, y=z*x, о которой постоянно будем напоминать, чтобы Вы ее заучили
замена переменных
После этого ДУ записываем в дифференциалах
дифференциальное уравнение
Далее преобразуем зависимость к дифференциальному уравнению с отделенными переменными
дифференциальное уравнение с разделенными переменными
и интегрированием решаем его.
интегрирования диференциаьного уравнения
Интегралы несложные, остальные преобразования выполнены на основе свойств логарифма. Последнее действие включает экспонирования логарифма. Наконец возвращаемся к исходной замене и записываем решение дифференциального уравнения в форме
решение дифференциального уравнения
Константа «C» принимает любое значение. Все кто учится заочно имеют проблемы на экзаменах с данным типом уравнений, поэтому просьба внимательно посмотреть и запомнить схему вычислений.

 

Пример 3. Решить дифференциальное уравнение
дифференциальное уравнение
Решение:Как следует из приведенной выше методики, дифференциальные уравнения такого типа решают методом введения новой переменной. Перепишем зависимость так, чтобы производная была без переменной
преобразования дифференциального уравнения
Далее по анализу правой части видим, что везде присутствует частка -ее и обозначаем за новую неизвестную
z=y/x, y=z*x.
Находим производную от y

С учетом замены первоначальное ДУ перепишем в виде

Одинаковые слагаемые упрощаем, а все получившие сводим к ДУ с отделенными переменными
дифференциальное уравнение с разделенными переменными
Интегрированием обеих частей равенства
интегрирования уравнений
приходим к решению в виде логарифмов
логарифмическое уравнение
Экспонируя зависимости находим общее решение дифференциального уравнения

которое после подстановки в него начальной замены переменных примет вид
общее решение уравнения
Здесь С — постоянная, которую можно доопределить из условия Коши. Если не задана задача Коши то стала принимает произвольное действительное значение.
Вот и вся мудрость в исчислении однородных дифференциальных уравнений.

Ссылка на основную публикацию