Дифференциальные уравнения с разделяющимися переменными

  • Дифференциальные уравнения, в которых переменные уже разделены
  • Дифференциальные уравнения, в которых требуется разделить переменные
  • Решить примеры самостоятельно, а затем посмотреть решения
  • Продолжаем решать примеры вместе

Дифференциальные уравнения, в которых переменные уже разделены

Дифференциальные уравнения, в которых выражение, зависящее от y, входит только
в левую часть, а выражение, зависящее от x — только в правую часть, это дифференциальные уравнения
с разделяющимися переменными
, в которых переменные уже разделены.

В левой части уравнения может находиться производная от игрека и в этом случае решением дифференциального
уравнения будет функция игрек, выраженная через значение интеграла от правой части уравнения. Пример такого уравнения —
.

В левой части уравнения может быть и дифференциал функции от игрека и тогда для получения решения уравнения
следует проинтегрировать обе части уравнения. Пример такого уравнения —
.

Пример 1. Найти общее решение дифференциального уравнения

Решение. Пример очень простой. Непосредственно находим функцию по её производной, интегрируя:

Таким образом, получили функцию — решение данного уравнения.

Пример 2. Найти общее решение дифференциального уравнения

Решение. Интегрируем обе части уравнения:

.

Оба интеграла — табличные. Идём к решению:

Функция — решение уравнения — получена. Как видим, нужно только уверенно знать табличные интегралы и
неплохо расправляться с дробями и корнями.

Дифференциальные уравнения, в которых требуется разделить переменные

Дифференциальные уравнения с разделяющимися переменными, в которых требуется разделить переменные,
имеют вид

.

В таком уравнении и
— функции только переменной x,
а и
функции только переменной y.

Поделив члены уравнения на произведение ,
после сокращения получим

.

Как видим, левая часть уравнения зависит только от x, а правая только от y, то есть
переменные разделены.

Левая часть полученного уравнения — дифференциал некоторой функции переменной x, а правая часть —
дифференциал некоторой функции переменной y. Для получения решения исходного дифференциального уравнения
следует интегрировать обе части уравнения. При этом при разделении переменных не обязательно переносить один его член
в правую часть, можно почленно интегрировать без такого переноса.

Пример 3. Найти общее решение дифференциального уравнения

.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение
почленно на произведение и получим

.

Почленно интегрируем:

,

откуда, используя метод замены переменной (подстановки), получаем

или ,

поскольку левая часть равенства есть сумма арифметических значений корней. Таким образом, получили
общий интеграл данного уравнения. Выразим из него y и найдём общее решение уравнения:

.

Есть задачи, в которых для разделения переменных
уравнение нужно не делить почленно на произведение некоторых функций, а почленно умножать. Таков следующий пример.

Пример 4. Найти общее решение дифференциального уравнения

.

Решение. Бывает, что забвение элементарной (школьной) математики мешает даже близко подойти к началу решения,
задача выглядит абсолютно тупиковой. В нашем примере для начала всего-то нужно вспомнить свойства степеней.

Так как , то
перепишем данное уравнение в виде

.

Это уже уравнение с разделяющимися переменными. Умножив его почленно на произведение , получаем

.

Почленно интегрируем:

Первый интеграл находим интегрированием по частям, а второй — табличный.
Следовательно,

.

Логарифимруя обе части равенства, получаем общее решение уравнения:

.

Решить примеры самостоятельно, а затем посмотреть правильные решения

Пример 5. Найти общее решение диффференциального уравнения

.

Правильное решение и ответ.

Пример 6. Найти общее решение диффференциального уравнения

.

Правильное решение и ответ.

Продолжаем решать примеры вместе

Пример 7. Найти общее решение дифференциального уравнения

.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение
почленно на и получим

.

Чтобы найти y, требуется найти интеграл. Интегрируем по частям.

Пусть , .

Тогда , .

Находим общее решение уравнения:

Пример 8. Найти частное решение дифференциального уравнения

,

удовлетворяющее условию .

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение
почленно на и получим


или

.

Записываем производную y в виде и получаем

Разделяем dy и dx и получаем уравнение:

, которое почленно интегрируя:

,

находим общее решение уравнения:

.

Чтобы найти частное решение уравнения, подставляем в общее решение значения y и
x из начального условия:

.

Таким образом частное решение данного дифференциального уравнения:

.

В некоторых случаях ответ (функцию) можно выразить явно. Для этого следует воспользоваться тем свойством
логарифма, что сумма логарифмов равна логарифму произведения логарифмируемых выражений. Обычно это следует делать в
тех случаях, когда слева искомая функция под логарифмом находится вместе с каким-нибудь слагаемым. Рассмотрим два
таких примера.

Пример 9. Найти общее решение дифференциального уравнения

.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных запишем производную
«игрека» в виде и получим

.

Разделяем «игреки» и «иксы»:

.

Почленно интегрируем и, так как в левой части «игрек» присутствует со слагаемым, в правой части
константу интегрирования записываем также под знаком логарифма:

.

Теперь по свойству логарифма имеем

.

Находим общее решение уравнения:

Пример 10. Найти частное решение дифференциального уравнения

,

удовлетворяющее условию .

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение
почленно на и получим


или

.

Разделяем dy и dx и получаем уравнение:



которое почленно интегрируя:

находим общее решение уравнения:

.

Чтобы найти частное решение уравнения, подставляем в общее решение значения y и
x из начального условия:

.

Таким образом частное решение данного дифференциального уравнения:

.

Выводы. В дифференциальных уравнениях с разделяющимися переменными, как в тех, в
которых переменные уже разделены, так и в тех, где переменные требуется разделить, существуют однозначные способы решения,
на основе которых может быть построен простой алгоритм. Если недостаточно уверенно освоен материал по нахождению производной и решению
интегралов, то требуется его повторить. Во многих задачах на путь к решению уравнения наводят знания и приёмы из
элементарной (школьной) математики.

Поделиться с друзьями

Ссылка на основную публикацию