Дифференциальные уравнения!

При решении различных задач физики, химии, математики и других точных наук часто пользуются математическими моделями в виде уравнений, связывающих одну или несколько независимых переменных, неизвестную функцию этих переменных и производные (или дифференциалы) этой функции. Такого сорта уравнения называют дифференциальными.
Если независимая переменная одна, то уравнение называется обыкновенным; если независимых переменных две или более, то уравнение называется дифференциальным уравнением в частных производных. С целью получить високовалифицированих специалистов во всех ВУЗах где изучают точные дисциплины обязательно курс дифференциальных уравнений. Для одних студентов теория дается тяжело, практика еще с горем пополам, для других тяжелая и теория, и практика. Если анализировать дифференциальные уравнения с практической стороны, то для их вычислений Вам нужно только хорошо уметь интегрировать и брать производные. Все остальные преобразования сводятся к нескольким схемам которые можно понять и изучить. Ниже изучем основные определения и метод решения простых ДР.

Теория дифференциальных уравнений

Определение: Обычным дифференциальным уравнением называют уравнение, которое в себе связывает независимую переменную х, функцию у(х) , ее производные у'(х), уn(х) и имеет общий вид F(x,y(x),y’ (x), …, yn(x))=0
Дифференциальным уравнением (ДР) называется или обычное дифференциальное уравнение, или дифференциальное уравнение в частных производных. Порядок дифференциального уравнения определяется порядком старшей производной (n), которая входит в данное дифференциальное уравнение.

Общим решением дифференциального уравнения называется функция, которая содержит столько постоянных, каков порядок дифференциального уравнения, и подстановка которой в данное дифференциальное уравнение превращает его в тождество, то есть имеет вид y=f(x, C1, C2, …, Cn).
Общее решение, которое не разрешено относительно у(х) и имеет вид F(x,y,C1,C2, …, Cn)=0 называется общим интегралом дифференциального уравнения.
Решение найденное из общего при фиксированных значениях постоянных C1,C2, …, Cn называется частным решением дифференциального уравнения.
Одновременное задания дифференциального уравнения и соответствующего количества начальных условий называется задачей Коши.
F(x,y,C1,C2, …, Cn)=0
y(x0)=y0;
….
yn(x0)=yn(0)

Обыкновенным дифференциальным уравнением первого порядка называется уравнение вида
F(x, y, y’)=0. (1)
Интегралом уравнения (1) называется cоотношение вида Ф (x,y)=0, если каждая неявно заданная им непрерывно-дифференциированая функция является решением уравнения (1).
Уравнение которое имеет вид (1) и не может быть сведено к простому виду называется уравнением, неразрешимим относительно производной. Если его можно записать в виде
y’ = f(x,y), то оно называется решенным уравнением относительно производной.
Задача Коши для уравнения первого порядка содержит только одну начальную условие и имеет вид:
F(x,y,y’)=0
y(x0)=y0.

Уравнения вида
M(x,y)dx+N(x,y)dx=0 (2)
где переменные x i y является «симметричными»: можно предполагать, что x — независимая, а y — зависимая переменная, или наоборот, y — независимая, а x — зависимая переменная, называется уравнением в симметричной форме.
Геометрический смысл дифференциального уравнения первого порядка
y’=f(x,y) (3)
заключается в следующем.
Данное уравнение устанавливает связь (зависимость) между координатами точки (x;y) и угловым коэффициентом y’ касательной к интегральной кривой, проходящей через эту точку. Таким образом, уравнение y’= f(x,y) представляет собой совокупность направлений (поле направлений) на декартовой плоскости Oxy.
Кривая построенная на точках в которых направление поля одинаково называется изоклиной. Изоклины можно использовать для приближенного построения интегральных кривых. Уравнение изоклины можно получить, если положить производную равную постоянной y’=С
f(x, y)=С уравнение изоклины..
Интегральной линией уравнения (3) называется график решения этого уравнения.
Обычные дифференциальные уравнения, решения которых можно задать аналитически y=g(x), называются интегрируемыми уравнениями.
Уравнения вида
M0(x)dx+N0(y)dy=0 (3)
называются уравнениями с раздельными сменными.
Из них и начнем знакомство с дифференциальными уравнениями. Процесс нахождения решений ДР называют интегрированием дифференциального уравнения.

Уравнения с разделенными переменными

Пример 1. Найти решение уравнения y’=x .
Выполнить проверку решения.
Решение: Запишем уравнение в дифференциалах
dy/dx=x или dy=x*dx.
Найдем интеграл правой и левой части уравнения
int(dy)=int(x*dx);
y=x2/2+C.

Это и есть интеграл ДР.
Проверим его правильность, вычислим производную функции
y’=1/2*2x+0=x.
Как можно убедиться получили исходное ДР, следовательно вычисления верны.
Мы только что нашли решение дифференциального уравнения первого порядка. Это именно проще уравнения, которое можно себе представить.

 

Пример 2. Найти общий интеграл дифференциального уравнения
(x+1)y’=y+3
Решение: Запишем исходное уравнение в дифференциалах
(x+1)dy=(y+3)dx.
Полученное уравнение сводим к ДР с разделенными переменными
дифференциальное уравнение с обособленными переменными
Все что осталось это взять интеграл от обеих частей
интегрирования уравнения
По табличными формулами находим
ln|y+3|=ln|x+1|+C.
Если экспонировать обе части, то получим
y+3=e ln|x+1|+Cили y=e ln|x+1|+C-3.
Такая запись является правильной, но не является компактной.
На практике применяют другой прием, при вычислении интеграла постоянную вносят под логарифм
ln|y+3|=ln|x+1|+ln(C).
По свойствам логарифма это позволяет свернуть два последних слагаемых
ln|y+3|=ln(С|x+1|).
Теперь при экспонировании решение дифференциального уравнения станет компактное и легко читаемое
y= С|x+1|+3
Запомните это правило, на практике оно применяется как эталон вычислений.

 

Пример 3. Решить дифференциальное уравнение
y’=-y*sin(x).
Решение:Запишем уравнение в дифференциалах
dy/dx= y*sin(x)
или после перегруппировки множителей в виде уравнения с разделенными переменными
dy/ y=-sin(x)dx.
Осталось проинтегрировать уравнение
int(1/y,y)=-int(sin(x), x);
ln|y|=cos(x)-ln(C).

Константу удобно внести под логарифм, да еще и с отрицательным значением, чтобы перенеся в левую часть получить
ln|С*y|=cos(x).
Экспонируем обе части зависимости
С*y=exp(cos(x)).
Это и есть общий интеграл дифференциального уравнения. Его можно оставить как есть, а можно постоянную перенести в правую сторону
общий интеграл дифференциального уравнения
Вычисления не сложные, интегралы тоже в большинстве случаев можно найти по табличным формулам интегрирования.

 

Пример 4. Решить задачу Коши
y’=y+x, y(1)=e3-2.
Решение:Здесь уже предварительные преобразования не пройдут. Однако уравнение линейное и довольно простое. В таких случаях нужно ввести новую переменную
z=y+x.
Помня, что y=y(x) найдем производную от z.
z’= y’+1,
откуда выражаем старую производную
y’= z’-1.
Подставим это все в исходное уравнение
z’-1=z или z’=z+1.
Распишем дифференциальное уравнения через дифференциалы
dz=(z+1)dx.
Отделяем переменные в уравнении
уравнение с обособленными переменными
Осталось вычислить простые интегралы, которые под силу каждому
интегрирования уравнения
Экспонируем зависимость, чтобы избавиться от логарифма при функции
z+1=ex+Сабо z=ex+1-1
Не забываем вернуться к выполненной замене
z=x+y= ex+С-1,
отсюда выписываем общее решение дифференциального уравнения
y= ex+С-x-1.
Найти решение задачи Коши в ДР в данном случае не сложно. Выписываем условие Коши
y(1)=e3-2
и подставляем в только что найденное решение
e1+С-1-1= e3-2.
Отсюда получим условие для вычисления постоянной
1+С=3; С=3-1=2.
Теперь можем записать решение задачи Коши (частичный решение ДР)
y= ex+2-x-1.
Если Вы хорошо умеете интегрировать, с производной у Вас дела тоже на высоте, тогда тема дифференциальных уравнений для Вас не будет препятствием в образовании.
В дальнейшем обучении Вам необходимо изучить несколько важных схем, чтобы научиться различать уравнения и знать, какая замена или методика работает в каждом случае.
После этого Вас ждут однородные и неоднородные ДР, дифференциальные уравнения первого и высших порядков. Чтобы не нагружать Вас теорией в следующих уроках мы будем приводить только тип уравнений и краткую схему их вычислений. Всю теорию Вы можете почитать из методических рекомендаций для изучения курса «Дифференциальные уравнения» (2014) авторы Бокало Николай Михайлович, Доманская Елена Викторовна, Чмырь Оксана Юрьевна. Можете использовать другие источники, содержащие понятны Вам объяснения теории дифференциальных уравнений. Готовые примеры для диф. уравнений взяты из программы для математиков ЛНУ им. И. Франка.
Мы знаем, как решить дифференциальные уравнения и постараемся в легкий способ привить эти знания Вам.

Ссылка на основную публикацию