Локальная и интегральная теоремы Лапласа. Решение задач

Если количество независимых испытаний достаточно большое применения формулы Бернулли становится трудоемким. Для упрощения вычислений применяют локальную и интегральную теоремы Лапласа, которые дают близкий к формуле Бернулли результат при большом количестве испытаний и не требуют больших вычислений.

ЛОКАЛЬНАЯ ТЕОРЕМА ЛАПЛАСА

Вероятность того, что в независимых испытаниях с вероятностью появления события равной событие наступит ровно раз (безразлично в какой последовательности) определяется по приближенной формуле

где

– Функция Гаусса,

– аргумент функции Гаусса;

– вероятность противоположного события .

Формулу называют локальной формулой Лапласа.

Функция обладает следующими свойствами:

1) она является четной функцией ;

2) для значений аргумента больше четырех она сколь угодно мала

Теорему Лапласа рекомендуется применять при значениях произведения больше девяти

ИНТЕГРАЛЬНАЯ ТЕОРЕМА МУАВРА-ЛАПЛАСА

Вероятность, что в независимых испытаниях событие с вероятностью появления наступит не менее раз и не более (независимо от последовательности появления) приближенно определяется зависимостью

где – интегральная функция Лапласа;

– аргументы интегральной функции распределения;

– вероятность невыполнения события .

Функция обладает следующими свойствами:

1) она является нечетной функцией

2) для аргументов больше пяти она равна 0,5

Значение обеих функций находят из таблиц в которых функции с достаточной точностью протабульовани.

———————————

Рассмотрим задачи на применение каждой из теорем.

Пример 1. Есть 100 лунок по которым случайным образом разбрасывают 30 шариков. Каждый шарик с равной вероятностью может попасть в любую лунку (в одну лунку попадает не более одного шарика). Найти вероятность того, что в выбранную лунку попадет ровно один шарик.

Решение. Проводится независимых бросков шариков с одинаковой вероятностью попадания при каждом броске

Вероятность попадания в лунку ровно одного шарика определим по локальной формулой Лапласа:

Для этого определяем составляющие

и подставим в зависимость

———————————

Пример 2. Проводится 200 независимых опытов с вероятностью успеха в каждом 24%. Какова вероятность успешного проведения 50 опытов?

Решение. По условию

находим составляющие формулы Лапласа

Подставляя в формулу, находим

———————————

Пример 3. Вероятность выхода из строя за смену одного станка равна 0,1. Определить вероятность выхода из строя от 2 до 13 станков при наличии 100 станков.

Решение. Записываем входные данные

Для подобных примеров применяем интегральную формулу Муавра-Лапласа и находим вероятность

———————————

Решение задач по приведенным теоремам позволяет при большом количестве испытаний находить приближенное значение вероятности. Локальная теорема необходима при определении конкретного количества появления событий, интегральная теорема Муавра-Лапласа — в случаях, когда задан диапазон возможного количества появлений события. Таблицы табулирования функций, применяемых в формулах можно найти в сборниках по теории вероятностей и интернете.

Ссылка на основную публикацию