Произведение двух матриц: формула, решения, свойства

  • Произведение матриц: определение, формула, способ нахождения
  • Примеры нахождения произведения матриц различной размерности
  • Возведение матрицы в степень
  • Свойства произведения матриц
  • Калькулятор произведения матриц онлайн

Будут и задачи для самостоятельного решения, к которым можно
посмотреть ответы.

Произведение матриц: определение, формула, способ нахождения

Определение. Произведением двух матриц А и В называется матрица С, элемент
которой, находящийся на пересечении i-й строки и j-го столбца, равен сумме произведений элементов
i-й строки матрицы А на соответствующие (по порядку) элементы j-го столбца матрицы В.

Из этого определения следует формула элемента матрицы C:

Произведение матрицы А на матрицу В обозначается АВ.

Пример 1. Найти произведение двух матриц А и B, если

,

.

Решение. Удобно нахождение произведения двух матриц А и В записывать так, как на рис.2:

На схеме серые стрелки показывают, элементы какой строки матрицы А на элементы
какого столбца матрицы В нужно перемножить для получения элементов матрицы С , а линиями цвета
элемента матрицы C соединены соответствующие элементы матриц A и B, произведения
которых складываются для получения элемента матрицы C.

В результате получаем элементы произведения матриц:

 



Теперь у нас есть всё, чтобы записать произведение двух матриц:

.

Проверить решение этой и других подобных задач можно на
калькуляторе произведения
матриц онлайн
.

Произведение двух матриц АВ имеет смысл только в том случае, когда число столбцов матрицы А совпадает с числом строк матрицы В .

Эту важную особенность будет легче запомнить, если почаще пользоваться следующими памятками:

Имеет место ещё одна важная особенность произведения матриц относительно числа строк и столбцов:

В произведении матриц АВ число строк равно числу строк матрицы А , а число столбцов равно числу столбцов матрицы В .

Пример 2. Найти число строк и столбцов матрицы C, которая является произведением двух матриц A и B следующих размерностей:

а) 2 Х 10 и 10 Х 5;

б) 10 Х 2 и 2 Х 5;

в) 4 Х 4 и 4 Х 10.

Решение:

а) 2 Х 5;

б) 10 Х 5;

в) 4 Х 10.

Примеры нахождения произведения матриц различной размерности

Пример 3. Найти произведение матриц A и B, если:

.

Решение. Число строк в матрице A — 2, число столбцов в матрице B — 2.
Следовательно, размерность матрицы C = AB — 2 X 2.

Вычисляем элементы матрицы C = AB.

Найденное произведение матриц: .

Пример 4. Найти произведение матриц
и
.

Правильное решение и ответ.


Проверить решение этой и других подобных задач можно на
калькуляторе произведения
матриц онлайн
.

Пример 5. Найти произведение матриц A и B, если:

.

Решение. Число строк в матрице A — 2, число столбцов в матрице B — 1.
Следовательно, размерность матрицы C = AB — 2 X 1.

Вычисляем элементы матрицы C = AB.

Произведение матриц запишется в виде матрицы-столбца: .

Проверить решение этой и других подобных задач можно на
калькуляторе произведения
матриц онлайн
.

Пример 6. Найти произведение матриц A и B, если:

.

Решение. Число строк в матрице A — 3, число столбцов в матрице B — 3.
Следовательно, размерность матрицы C = AB — 3 X 3.

Вычисляем элементы матрицы C = AB.

Найденное произведение матриц: .

Проверить решение этой и других подобных задач можно на
калькуляторе произведения
матриц онлайн
.

Пример 7. Найти произведение матриц A и B, если:

.

Решение. Число строк в матрице A — 1, число столбцов в матрице B — 1.
Следовательно, размерность матрицы C = AB — 1 X 1.

Вычисляем элемент матрицы C = AB.

Произведение матриц является матрицей из одного элемента: .

Проверить решение этой и других подобных задач можно на
калькуляторе произведения
матриц онлайн
.

Программная реализация произведения двух матриц на С++ разобрана в
соответствующей статье в блоке «Компьютеры и программирование».

Возведение матрицы в степень

Возведение матрицы в степень определяется как умножение матрицы на ту же самую матрицу.
Так как произведение матриц существует только тогда, когда число столбцов первой матрицы совпадает с
числом строк второй матрицы, то возводить в степень можно только квадратные матрицы. n-ая
степень матрицы путём умножения матрицы на саму себя n раз:

Пример 8. Дана матрица .
Найти A² и A³.

Решение:

Найти произведение матриц самостоятельно, а затем посмотреть решение

Пример 9. Дана матрица

Найти произведение данной матрицы и транспонированной матрицы ,
произведение транспонированной матрицы и
данной матрицы.

Правильное решение и ответ.

Свойства произведения двух матриц

Свойство 1. Произведение любой матрицы А на единичную матрицу Е соответствующего порядка как справа, так и слева, совпадает с матрицей А , т.е. АЕ = ЕА = А .              

Иными словами, роль единичной матрицы при умножении матриц такая же, как и единицы при умножении чисел.

Пример 10. Убедиться в справедливости свойства 1, найдя произведения матрицы

на единичную матрицу справа и слева.

Решение. Так как матрица А содержит три столбца, то требуется найти произведение АЕ , где


единичная матрица третьего порядка. Найдём элементы произведения С = АЕ :


                                                                                               

Получается, что АЕ = А .

Теперь найдём произведение ЕА , где Е – единичная матрица второго порядка, так как матрица А содержит две строки. Найдём элементы произведения С = ЕА :



Доказано: ЕА = А .

Проверить решение этой и других подобных задач можно на
калькуляторе произведения
матриц онлайн
.

Свойство 2. Произведение матрицы А на нуль-матрицу является нуль-матрицей. Это свойство очевидно, так как все элементы нуль-матрицы равны нулю.

Свойство 3. Произведение матриц некоммутативно:
.

Для этого достаточно показать, что равенство АВ = ВА не выполняется для каких-либо двух матриц.

Пример 11. Найти произведения матриц АВ и ВА, если

,

,

и убедиться в том, что эти произведения не равны друг другу:

.

Решение. Находим:

И действительно, найденные произведения не равны:
.

Проверить решение этой и других подобных задач можно на
калькуляторе произведения
матриц онлайн
.

Свойство 4. Произведение матриц ассоциативно: (АВ)С = А(ВС) .

Свойство 5. Для произведения матриц выполняется дистрибутивный закон: (А + В) С = АС + ВС , С (А + В) = СА + СВ .

Свойство 6. Определитель произведения двух квадратных матриц равен произведению их определителей: если С = АВ , то

.

Поделиться с друзьями

Ссылка на основную публикацию