Нахождение обратной матрицы: три алгоритма и примеры

  • Что значит найти обратную матрицу?
  • Нахождение обратной матрицы методом алгебраических дополнений (союзной матрицы)
  • Нахождение обратной матрицы методом исключения неизвестных Гаусса
  • Нахождение обратной матрицы методом линейных преобразований
  • Найти обратную матрицу самостоятельно, а затем посмотреть решение
  • Обратная матрица — онлайн калькулятор

Что значит найти обратную матрицу?

Нахождение обратной матрицы — процесс, который состоит из достаточно простых действий. Но эти
действия повторяются так часто, что процесс получается довольно продолжительным. Главное — не потерять внимание при решении.

При решении наиболее распространённым методом — алгебраических дополнений — потребуется:

  • вычислять определители, поэтому нелишне открыть в новом окне материал по вычислению определитедей;
  • находить миноры и алгебраические дополнения — подробно об этом также в соответствующем материале;
  • транспонировать матрицы.

При решении примеров мы разберём эти действия подробнее. А пока узнаем, что гласит теория
об обратной матрице.

Для обратной матрицы существует уместная аналогия с обратным
числом. Для каждого числа a, не равного нулю, существует такое число b, что произведение
a и b равно единице: ab = 1. Число
b называется обратным для числа b. Например, для числа 7 обратным является число 1/7,
так как 7*1/7=1.

Обратной матрицей, которую требуется отыскать для данной квадратной матрицы А, называется такая матрица

,

произведение на которую матрицы А справа является единичной матрицей, т.е,
формула единичной матрицы как произведения исходной матрицы и обратной матрицы.                (1)

Единичной матрицей называется диагональная матрица, у которой все диагональные
элементы равны единице.

Нахождение обратной матрицы — задача, которая чаще решается двумя методами:

  • методом алгебраических дополнений, при котором, как было замечено в начале урока, требуется находить определители, миноры и алгебраические дополнения
    и транспонировать матрицы;
  • методом исключения неизвестных Гаусса, при котором требуется производить элементарные преобразования матриц
    (складывать строки, умножать строки на одно и то же число и т. д.).

Для особо любознательных существуют и другие методы, например, метод линейных
преобразований. На этом уроке разберём три упомянутых метода и алгоритмы нахождения обратной матрицы
этими методами.

Теорема. Для каждой неособенной (невырожденной, несингулярной) квадратной матрицы можно найти обратную матрицу, и притом только одну. Для особенной (вырожденной, сингулярной) квадратной матрицы обратная матрица не существует.

Квадратная матрица называется неособенной (или невырожденной, несингулярной), если её определитель не равен нулю, и особенной (или вырожденной, сингулярной), если её определитель равен нулю.

Обратная матрица может быть найдена только для квадратной матрицы. Естественно,
обратная матрица также будет квадратной и того же порядка, что и данная матрица. Матрица, для которой
может быть найдена обратная матрица, называется обратимой матрицей.

На сайте есть онлайн калькулятор для нахождения обратной матрицы. Вы можете открыть
его в новом окне уже сейчас, если держите перед собой ваши собственные задания. А мы разберём несколько
разминочных.

Нахождение обратной матрицы методом алгебраических дополнений (союзной матрицы)

Для неособенной квадратной матрицы А обратной является матрица

формула обратной матрицы для вычисления методом алгебраических дополнений,  (2)

где
определитель матрицы А, а

— матрица, союзная с матрицей А.

Разберём ключевые понятия, которые потребуются для решения задач — союзная матрица, алгебраические дополнения и транспонированная матрица.

Пусть существует квадратная матрица A:

Транспонированная относительно матрицы A матрица A’ получается,
если из строк матрицы A сделать столбцы, а из её столбцов — наоборот, строки, то есть заменить строки
столбцами:

Остановимся на минорах и алгебраических дополнениях.

Пусть есть квадратная матрица третьего порядка:

.

Её определитель:

Вычислим алгебраическое дополнение элемента ,
то есть элемента 2, стоящего на пересечении первой строки и второго столбца.

Для этого нужно сначала найти минор этого элемента. Он получается вычёркиванием из
определителя строки и столбца, на пересечении которых стоит указанный элемент. В результате останется
следующий определитель, который и является минором элемента :

.

Алгебраическое дополнение элемента
получим, если умножим ,
где i — номер строки исходного элемента, а k — номер столбца исходного элемента, на
полученный в предыдущем действии минор этого исходного элемента. Получаем алгебраическое дополнение элемента
:

.

По этой инструкции нужно вычислить алгебраические дополнения всех элементов матрицы
A’, транспонированной относительно матрицы матрица A.

И последнее из значимых для нахождение обратной матрицы понятий. Союзной с квадратной матрицей A называется матрица

того же порядка, элементами которой являются алгебраические дополнения соответствующих элементов определителя матрицы
,
транспонированной относительно матрицы A. Таким образом, союзная матрица состоит из следующих элементов:

Алгоритм нахождения обратной матрицы методом алгебраических дополнений

1. Найти определитель данной матрицы A. Если определитель равен нулю, нахождение
обратной матрицы прекращается, так как матрица вырожденная и обратная для неё не существует.

2. Найти матрицу, транспонированную относительно A.

3. Вычислить элементы союзной матрицы как алгебраические дополнения марицы, найденной на шаге 2.

4. Применить формулу (2): умножить число, обратное определителю матрицы A,
на союзную матрицу, найденную на шаге 4.

5. Проверить полученный на шаге 4 результат, умножив данную матрицу A на
обратную матрицу. Если произведение этих матриц равно единичной матрицы, значит обратная матрица была
найдена верно. В противном случае начать процесс решения снова.


Пример 1. Для матрицы

найти обратную матрицу.

Решение. Для нахождения обратной матрицы необходимо найти определитель матрицы А .
Находим по правилу треугольников:

Следовательно, матрица А – неособенная (невырожденная, несингулярная) и для неё существует обратная.

Найдём матрицу, союзную с данной матрицей А.

Найдём матрицу
,
транспонированную относительно матрицы A:

Вычисляем элементы союзной матрицы как алгебраические дополнения матрицы,
транспонированной относительно матрицы A:

Следовательно, матрица
,
союзная с матрицей A, имеет вид

Замечание. Порядок вычисления элементов и транспонирования матрицы может
быть иным. Можно сначала вычислить алгебраические дополнения матрицы A, а затем транспонировать
матрицу алгебраических дополнений. В результате должны получиться те же элементы союзной матрицы.

Применяя формулу (2), находим матрицу, обратную матрице А:

Проверить решение можно с помощью онлайн калькулятора
для нахождения обратной матрицы
.

Нахождение обратной матрицы методом исключения неизвестных Гаусса

Первый шаг для нахождения обратной матрицы методом исключения неизвестных Гаусса —
приписать к матрице A единичную матрицу того же порядка, отделив их вертикальной чертой. Мы
получим сдвоенную матрицу .
Умножим обе части этой матрицы на ,
тогда получим

,

но

и .

Алгоритм нахождения обратной матрицы методом исключения неизвестных Гаусса

1. К матрице A приписать единичную матрицу того же порядка.

2. Полученную сдвоенную матрицу преобразовать так, чтобы в левой её части получилась
единичная матрица, тогда в правой части на месте
единичной матрицы автоматически получится обратная матрица. Матрица A в левой части
преобразуется в единичную матрицу путём элементарных преобразований матрицы.

2. Если в процессе преобразования матрицы A в единичную матрицу в какой-либо
строке или в каком-либо столбце окажутся только нули, то определитель матрицы равен
нулю, и, следовательно, матрица A будет вырожденной, и она не имеет обратной матрицы. В этом
случае дальнейшее нахождение обратной матрицы прекращается.

Пример 2. Для матрицы

найти обратную матрицу.

Решение. Составляем сдвоенную матрицу

и будем её преобразовывать, так чтобы в левой части получилась единичная матрица.
Начинаем преобразования.

Умножим первую строку левой и правой матрицы на (-3) и сложим её со второй строкой,
а затем умножим первую строку на (-4) и сложим её с третьей строкой, тогда получим

.

Чтобы по возможности не было дробных чисел при последующих преобразованиях, создадим
предварительно единицу во второй строке в левой части сдвоенной матрицы. Для этого умножим вторую строку
на 2 и вычтем из неё третью строку, тогда получим

.

Сложим первую строку со второй, а затем умножим вторую строку на (-9) и сложим её
с третьей строкой. Тогда получим

.

Разделим третью строку на 8, тогда

.

Умножим третью строку на 2 и сложим её со второй строкой. Получается:

.

Переставим местами вторую и третью строку, тогда окончательно получим:

.

Видим, что в левой части получилась единичная матрица, следовательно, в правой части
получилась обратная матрица .
Таким образом:

.

Можно проверить правильность вычислений, умножим исходную матрицу на найденную обратную матрицу:

.

В результате должна получиться обратная матрица.

Проверить решение можно с помощью онлайн калькулятора
для нахождения обратной матрицы
.

Пример 3. Для матрицы

найти обратную матрицу.

Решение. Составляем сдвоенную матрицу

и будем её преобразовывать.

Первую строку умножаем на 3, а вторую на 2, и вычитаем из второй,
а затем первую строку умножаем на 5, а третью на 2 и вычитаем из третьей строки, тогда получим

.

Первую строку умножаем на 2 и складываем её со второй, а затем из третьей строки
вычитаем вторую, тогда получим

.

Видим, что в третьей строке в левой части все элементы получились равными нулю.
Следовательно, матрица вырожденная и обратной матрицы не имеет. Дальнейшее нахождение обратной марицы прекращаем.

Проверить решение можно с помощью онлайн калькулятора
для нахождения обратной матрицы
.

Нахождение обратной матрицы методом линейных преобразований

Матрицы теснейшим образом связаны с системами линейных уравнений. Каждой матрице
соответствует система линейных уравнений, коэффициенты в которой есть элементы матрицы. И наоборот,
системе линейных уравнений соответствует некоторая матрица.

Поэтому существует метод линейных преобразований для нахождения обратной матрицы.
Для решения задач нам будет достаточно знать, что линейное преобразование — это система линейных
уравнений, вид которой будет приведён ниже в алгоритме.

Алгоритм нахождения обратной матрицы методом линейных преобразований

1. Для данной невырожденной матрицы A составить линейное преобразование —
систему линейных уравнений вида

,

где aij — элементы
матрицы A.

2. Решить полученную систему относительно y — найти для предыдущего
линейного преобразование обратное линейное преобразование

,

в котором Aij
алгебраические дополнения элементов матрицы A, Δ — определитель матрицы A. Внимание!
Алгебраические дополнения располагаются как в транспонированной матрице, то есть для элементов строки —
в столбце, а для элементов столбца — в строке.

3. Находим коэффициенты при y: ,
которые и будут элементами матрицы, обратной для матрицы A.

4. Пользуясь элементами, найденными на шаге 3, записать найденную обратную матрицу.

Наиболее наблюдательные могли заметить, что по сути метод линейных преобразований —
это тот же метод алгебраических преобразований (союзной матрицы), но с другой формой записи. Для
кого-то метод линейных преобразований может оказаться более удобным как более компактный.

Пример 4. Найти обратную матрицу для матрицы

.

Сначала проверим, не равен ли нулю определитель данной матрицы. Он не равен нулю,
следовательно, обратная матрица существует.

Для данной матрицы записываем линейное преобразование:

.

Находим линейное преобразование, обратное предыдущему, для этого потребуется
находить алгебраические дополнения (урок откроется в новом окне).
Запишем обратное линейное преобразование:

Коэффициенты при иксах в обратном линейном преобразовании — это элементы обратной матрицы
для матрицы A. Таким образом нашли обратную матрицу:

Проверить решение можно с помощью онлайн калькулятора
для нахождения обратной матрицы
.

Найти обратную матрицу самостоятельно, а затем посмотреть решение

Пример 5. Найти обратную матрицу для матрицы

.

Посмотреть правильное решение и ответ.

Ссылка на основную публикацию