Показательные и логарифмические неравенства — Часть 2

Полезный прием для решения сложных неравенств на ЕГЭ по математике – метод рационализации неравенства. Другое название — метод замены множителя. Это один из тех секретов, о которых ученику рассказывает репетитор. В учебниках о таком не написано.

Суть метода в том, чтобы от неравенства, содержащего в качестве множителей сложные показательные или логарифмические выражения, перейти к равносильному ему более простому рациональному неравенству.

Давайте для начала вспомним, что такое равносильные уравнения (или неравенства) В школьной программе этот важный вопрос почти не обсуждается. Поэтому запишем определение.

Равносильными называются уравнения, множества решений которых совпадают.

Заметим, что внешне уравнения могут быть и не похожи друг на друга.

Например, уравнения (x − 3)2 = 0 и x − 3 = 0 равносильны. Число 3 является единственным решением и того, и другого.

Уравнения и также равносильны. Оба они не имеют решений. Другими словами, множество решений каждого из них – пусто.

Уравнения и не являются равносильными. Решением первого уравнения является только x = 5. Решения второго – два числа: x = 5 и x = 1. Получается, что возведение обеих частей уравнения в квадрат в общем случае приводит к уравнению, неравносильному исходному.

Аналогичное определение – для неравенств.

Равносильными называются неравенства, множества решений которых совпадают.
Например, неравенства и равносильны – ведь множества их решений совпадают. В этом легко убедиться с помощью метода интервалов.

Неравенства и также равносильны при . Заметим, что внешне эти неравенства не похожи – одно из них логарифмическое, другое алгебраическое.

Другими словами, при x > 0 неравенства и имеют одинаковые решения. Если какое-либо число x > 0 является решением одного из них, то оно будет и решением второго.

А это значит, что при любом x > 0 выражение будет иметь такой же знак, как и выражение x − 5. Следовательно, если в какое-либо сложное неравенство входит в качестве множителя выражение то при выполнении условия x > 0 его можно заменить на более простое x − 5 и получить неравенство, равносильное исходному.

Вот ключевой момент. На этом и основан метод рационализации – замены множителей, содержащих сложные логарифмические или показательные выражения, на более простые алгебраические множители.

Например, выражение вида , где f и g – функции от x, a – число, можно заменить на более простое (f − g) (a − 1) – конечно, при условии, что f(x) > 0 и g(x) > 0. Доказательство легко провести самостоятельно.

А сейчас – самое главное: волшебная таблица, позволяющая заменять сложные логарифмические (или показательные) множители в неравенствах на более простые. Эта таблица является ключом к задаче С3. Вот увидите, она выручит вас на ЕГЭ по математике:

Сложный множитель На что заменить
logh f − logh g (h − 1) (f − g)
logh f − 1 (h − 1) (f − h)
logh f (h − 1) (f − 1)
h f − hg (h − 1) (f − g)
h f − 1 (h − 1) · f
f h − gh (f − g) · h
f, g — функции от x.
h — функция или число.

 

Конечно же, все выражения, которые содержат логарифмы, существуют при f, g, h > 0 и h ≠ 1.

Когда на ЕГЭ по математике вы применяете метод рационализации (замены множителя), — обязательно поясните, что вы им воспользовались. И не забудьте доказать соответствующую формулу. Иначе можно потерять балл.

Обратите внимание, что мы говорим о замене множителя в неравенствах вида  Знак здесь может быть любой: >, ≥, ≤. Правая часть обязательно должна быть равна нулю. И заменяем мы именно множитель (а не слагаемое, например). Иначе ничего не получится.

Перейдем к практике – к решению задач из вариантов ЕГЭ по математике Профильного уровня.

1.

ОДЗ неравенства:

Применим метод рационализации. В соответствии с нашей таблицей, множитель заменим на (2 − x − 1)(x + 2 − 1). Множитель вида заменим на (x + 3 − 1)(3 − x − 1). Таким образом, от логарифмического неравенства мы перешли к рациональному:

(1 − x) (x + 1) (x + 2) (2 − x) ≤ 0

Решим его методом интервалов:

Ответ:

2.

Начнем с ОДЗ.

Заметим, что выражение положительно при x ∈ ОДЗ. Умножим обе части неравенства на это выражение.
Упростим числитель правой части неравенства:


Поделим обе части неравенства на 5x > 0:

Неравенство уже намного проще, чем исходное. Но основания степеней разные! Чтобы применить метод рационализации, нам придется представить 2x − 1 в виде степени с основанием 3.

Неравенство примет вид:

Воспользуемся методом замены множителя. Множитель вида h f −h g можно заменить на (h − 1) (f − g). Да и логарифм в знаменателе можно заменить на выражение x + 1.

Оценим . Это необходимо сделать, чтобы правильно расставить точки на числовой прямой.

Ответ:

 

3.

Постараемся упростить это неравенство. Область допустимых значений

Отсюда следует, что x > 0. Это хорошо, потому что при данных значениях x выражение x + 1 строго положительно, следовательно, мы можем умножить на него обе части неравенства. Да и на x2 тоже можно умножить обе части неравенства, и тогда оно станет проще

Преобразуем числители выражений в левой и правой части и сделаем замену log2x = t

Теперь обе части неравенства можно сократить на 5t > 0.


Поскольку , выражение 2t−1 можно записать как 3(t−1)·log32

Заметим, что log32 − 2 < 0.

Мы получили квадратичное неравенство относительно t. Решим его:

Итак, t ≥ 1 или t ≤ log32 − 2.
Вернемся к переменной x:

или

Ответ:

4. Еще одна задача из той же серии.

Запишем ОДЗ:

Умножим обе части неравенства на . Постараемся упростить числители выражений в левой и правой части.

Поделим обе части неравенства на

Хорошо бы сделать замену. Пусть log2(4x) = t. Тогда:

Неравенство примет вид:


Мы уже знаем, как представить число 7 в виде степени числа 2:

Применим метод рационализации.

Оценим

4 < 7 < 8;

или  

Ответ:

5. Еще одна задача-страшилка из того же сборника:

Начнем с ОДЗ. Условий будет много – все выражения под логарифмами должны быть положительны, все основания логарифмов положительны и не равны единице, и еще знаменатель не равен нулю

Применим в левой части неравенства формулу перехода к другому основанию

Последовательно применим метод замены множителя, то есть метод рационализации.
Напомним, что множитель log h f можно заменить на (h-1)( f-1), а множитель (log h f — 1) — на (h — 1)( f — h).

Поскольку при x ∈ ОДЗ, а > 0 при всех x, получим:

С учетом ОДЗ:

Ответ: x ∈ (-5; -3]

Посмотрим, чем поможет метод замены множителя в решении сложного показательного неравенства.

6. Решите неравенство:

frac{{rm 2}cdot {{rm 3}}^{{rm 2x+1}}{rm -}{{rm 6}}^{{rm x}}{rm -}{{rm 4}}^{{rm x+1}}{rm -}{rm 9}}{{{rm 9}}^{{rm x}}{rm -}{rm 3}}le {rm 3.}

frac{{rm 2}cdot {{rm 3}cdot {rm 3}}^{{rm 2x}}{rm -}{{rm 6}}^{{rm x}}{rm -}{rm 4}cdot {{rm 2}}^{{rm 2x}}{rm -}{rm 3}cdot {{rm 3}}^{{rm 2x}}{rm -}{rm 9+9}}{{{rm 3}}^{{rm 2x}}{rm -}{rm 3}}le {rm 0}

frac{{{rm 3}cdot {rm 3}}^{{rm 2x}}{rm -}{{rm 3}}^{{rm x}}cdot {{rm 2}}^{{rm x}}{rm -}{rm 4}cdot {{rm 2}}^{{rm 2x}}}{{{rm 3}}^{{rm 2x}}{rm -}{rm 3}}le {rm 0}

Числитель дроби в левой части — однородное выражение, где каждое слагаемое имеет степень 2х. Поделим обе части неравенства на {{rm 2}}^{{rm 2}{rm x}}{rm textgreater 0.}

Получим:

newline frac{3 cdot left (frac{3}{2} right )^{2x}-left (frac{3}{2} right )^{x}-4}{3^{2x}-3}leq 0 newline , newline 3 cdot left (frac{3}{2} right )^{2x}-left (frac{3}{2} right )^{x}-4=0 newline , newline frac{3left ( left ( frac{3}{2} right )^x+1 right )left ( left ( frac{3}{2} right )^x-frac{4}{3} right )}{3^{2x}-3}leq 0

newline left ( frac{3}{2} right )^x=t; , ,3t^2-t-4=0 newline , newline D=1+48=49, , , , sqrt{D}=7, newline , newline t=frac{1pm 7}{6}; , t_1=-1; , t_2=frac{4}{3} newline , newline 3t^2-t-4=3left ( t+1 right )left ( t-frac{4}{3} right )

Поскольку {left(frac{3}{2}right)}^x textgreater 0 , поделим обе части неравенства на {left(frac{3}{2}right)}^x+1 textgreater 0.

frac{{left(frac{3}{2}right)}^x-frac{4}{3}}{3^{2x}-3}le 0;

frac{{left(frac{3}{2}right)}^x-{(frac{3}{2})}^{{{log}_{frac{3}{2}} frac{4}{3} }}}{3^{2x}-3^1}

Применяя метод рационализации, множитель вида h^f-h^g заменяем на

left(h-1right)left(f-gright). Получим:

newline frac{left ( frac{3}{2} -1right )left ( x-log_{frac{3}{2}}frac{4}{3} right )}{left ( 3-1 right )left ( 2x-1 right )} leq 0 newline , newline frac{x-log_{frac{3}{2}}frac{4}{3}}{x-frac{1}{2}}leq 0

Остается решить неравенство методом интервалов. Но как сравнить frac{1}{2} и {{log}_{frac{3}{2}} frac{4}{3} } ?

Что больше? Давайте представим frac{1}{2} как логарифм с основанием frac{3}{2}:

frac{1}{2}={{log}_{frac{3}{2}} {left(frac{3}{2}right)}^{frac{1}{2}} }={{log}_{frac{3}{2}} sqrt{frac{3}{2}} }

frac{4}{3} vee sqrt{frac{3}{2}};

 frac{16}{9} vee frac{3}{2};

 32 vee  27;

32 textgreater 27,

Значит, {{log}_{frac{3}{2}} frac{4}{3} } textgreater frac{1}{2}

Ответ: xin left(frac{1}{2}; {{log}_{frac{3}{2}} frac{4}{3} }right].

7. Теперь логарифмическое неравенство. Обратите внимание, что здесь лучше всего записывать решение в виде цепочки равносильных переходов. И само неравенство, которое мы упрощаем, и область его допустимых значений мы записываем в одну систему. И решаем ее.

Решите неравенство:

{{log}_{3-x} frac{x+4}{{left(x-3right)}^2} }ge -2

{{log}_{3-x} frac{x+4}{{left(x-3right)}^2} }ge -2 textless  = textgreater  left{ begin{array}{c}3-x textgreater 0 \3-xne 1 \frac{x+4}{{left(x-3right)}^2} textgreater 0 \{{log}_{3-x} frac{x+4}{{left(x-3right)}^2} }+2ge 0 end{array}right.

Мы объединили в систему и область допустимых значений, и само неравенство. Применим формулу логарифма частного, учитывая, что {left(a-bright)}^2={left(b-aright)}^2 .

Используем также условия  3-x textgreater 0;  x+4 textgreater 0.

left{ begin{array}{c}x textless 3 \xne 2 \x+4 textgreater 0 \{log}_{3-x}left(x+4right)-{log}_{3-x}{left(3-xright)}^2+2ge 0 end{array}right. textless  = textgreater  left{ begin{array}{c}x textless 3 \xne 2 \x textgreater -4 \{log}_{3-x}left(x+4right)ge 0 end{array}right.

Обратите внимание, как мы применили формулу для логарифма степени. Строго говоря, {{log}_a {left(bleft(xright)right)}^2=2{{log}_a left|bleft(xright)right| } }.

Поскольку 3-x textgreater 0, { log}_{3-x}{left(3-xright)}^2=2{{log}_{3-x} left|3-xright|= }2{{log}_{3-x} left(3-xright)=2. }

Согласно методу замены множителя, выражение {log}_{3-x}left(x+4right) заменим

на left(3-x-1right)left(x+4-1right).

Получим систему:

left{ begin{array}{c}xne 2 \-4 textless x textless 3 \left(2-xright)left(x+3right)ge 0 end{array}right.

Решить ее легко.

Ответ: xin left[-3;2right).

8. А теперь неравенство с ловушкой. Мы надеемся, что вы помните — нельзя извлекать корень из неравенства.

Решите неравенство:

{{lg}^2 frac{{left(x+2right)}^2left(x+5right)}{5} textless {lg}^2frac{x+5}{20} }

Извлекать корень из неравенства нельзя! Можно перенести все в левую часть неравенства и разложить на множители как разность квадратов: a^2-b^2=left(a-bright)left(a+bright)

left ( lgfrac{left ( x+2 right )^2left ( x+5 right )}{5}-lgfrac{x+5}{20} right )left ( lgfrac{left ( x+2 right )^2left ( x+5 right )}{5}+lgfrac{x+5}{20} right ) textless 0

Применим формулы разности и суммы логарифмов, следя за областью допустимых значений. Все выражения под логарифмами в исходном неравенстве должны быть положительны.

left{ begin{array}{c}lgfrac{{left(x+2right)}^2left(x+5right)cdot 20}{5cdot left(x+5right)}cdot {lg left(frac{{left(x+2right)}^2cdot {left(x+5right)}^2}{100}right) } textless 0 \{left(x+2right)}^2left(x+5right) textgreater 0 \x+5 textgreater 0 end{array}right.

Посмотрим на второе и третье неравенства системы. Поскольку х+5 положительно, то и выражение (x+2)^2 должно быть положительно.

Заметим, что решения неравенства (x+2)^2 textgreater  0 — это все числа, кромеx= - 2.

Получим:

left{ begin{array}{c}lgleft ( 4cdotleft ( x+2 right )^2 right ) cdot lg left ( frac{left ( x+2 right )^2 cdot left ( x+5 right )^2}{100} right ) textless 0\x textgreater -5 \xne -2 end{array}right.

По методу рационализации, каждый из множителей вида {{log}_h f } заменяем на left(h-1right)left(f-1right).

newline left{ begin{array}{c}left(10-1right)cdot left(4{left(x+2right)}^2-1right)cdot left(10-1right)left(frac{{left(x+2right)}^2cdot {left(x+5right)}^2}{100}-1right) textless 0 \x textgreater -5 \xne -2 end{array}right.newline textless  = textgreater left{ begin{array}{c}left(2x+4-1right)left(2x+4+1right)left(left(x+2right)left(x+5right)-10right)left(left(x+2right)left(x+5right)+10right) textless 0 \x textgreater -5 \xne -2 end{array}right.newlinetextless  = textgreater left{ begin{array}{c}left(2x+3right)left(2x+5right)cdot xcdot left(x+7right)cdot left(x^2+7x+20right) textless 0 \x textgreater -5 \xne -2 end{array}right.newline textless  = textgreater left{ begin{array}{c}left(2x+3right)left(2x+5right)cdot xcdot left(x+7right) textless 0 \x textgreater -5 \xne -2 end{array}right.

Просто равносильные преобразования. Выражение x^2+7x+20 положительно всегда — так как в уравнении x^2+7x+20=0 дискриминант отрицателен. Осталось применить метод интервалов.

Ответ: xin left(-5;-frac{5}{2}right)cup left(-frac{3}{2};0right).

Больше неравенств: Задание 15 Профильного ЕГЭ по математике

Ссылка на основную публикацию