Модуль в модуле

Среди примеров на модули часто встречаются уравнения где нужно найти корни модуля в модуле, то есть уравнение вида
||a*x-b|-c|=k*x+m
.
Если k=0, то есть правая сторона равна постоянной (m) то проще искать решение уравнения с модулями графически. Ниже приведена методика раскрытия двойных модулей на распространенных для практики примерах. Хорошо разберите алгоритм вычисления уравнений с модулями, чтобы не иметь проблем на контрольных, тестах, и просто, чтобы знать.

Пример 1. Решить уравнение модуль в модуле |3|x|-5|=-2x-2.
Решение: Всегда начинают раскрывать уравнения с внутреннего модуля
|x|=0 <-> x=0.
В точке x=0 уравнения с модулем разделяется на 2.
При x < 0 подмодульная функция отрицательная, поэтому при раскрытии знак меняем на противоположный
|-3x-5|=-2x-2.
При x>0 или равно, раскрывая модуль получим
|3x-5|=-2x-2.
Решим уравнение для отрицательных переменных (x < 0). Оно разлагается на две системы уравнений. Первое уравнение получаем из условия, что функция после знака равенства неотрицательна. Второе — раскрывая модуль в одной системе принимаем, что подмодульная функция положительная, в иной отрицательная — меняем знак правой или левой части (зависит от методики преподавания).
раскрытия модулей
Из первого уравнения получим что решение не должно превышать (-1), т.е.
условие на корень
Это ограничение полностью принадлежит области в которой решаем. Перенесем переменные и постоянные по разные стороны равенства в первой и второй системе
решения уравнений
и найдем решение


Оба значения принадлежат промежутку что рассматривается, то есть являются корнями.
Рассмотрим уравнение с модулями при положительных переменных
|3x-5|=-2x-2.
Раскрывая модуль получим две системы уравнений
уравнения с модулем, раскрытия
Из первого уравнения, которое является общим для двух сиcтем, получим знакомое условие

которое в пересечении с множеством, на котором ищем решение дает пустое множество (нет точек пересечения). Итак единственными корнями модуля с модулем являются значения
x=-3; x=-1,4.

 

Пример 2. Решить уравнение с модулем ||x-1|-2|=3x-4.
Решение: Начнем с раскрытия внутреннего модуля
|x-1|=0 <=> x=1.
Подмодульная функция меняет знак в единице. При меньших значениях она отрицательная, при больших — положительная. В соответствии с этим при раскрытии внутреннего модуля получим два уравнения с модулем
x |-(x-1)-2|=3x-4;
x>=1 -> |x-1-2|=3x-4.

Обязательно проверяем правую сторону уравнения с модулем, она должна быть больше нуля.
3x-4>=0 -> x>=4/3.
Это означает, что первое из уравнений нет необхидноcти решать, поcкольку оно выпиcано для x< 1,что не соответствует найденному условию. Раскроем модуль во втором уравнении
|x-3|=3x-4 ->
x-3=3x-4
или x-3=4-3x;
4-3=3x-x
или x+3x=4+3;
2x=1 или 4x=7;
x=1/2
или x=7/4.
Получили два значения, первое из которых отвергаем, поскольку не принадлежит нужному интервалу. Окончательно уравнение имеет одно решение x=7/4.

 

Пример 3. Решить уравнение с модулем ||2x-5|-1|=x+3.
Решение: Раскроем внутренний модуль
|2x-5|=0 <=> x=5/2=2,5.

Точка x=2,5 разбивает числовую ось на два интервала. Соответственно, подмодульная функция меняет знак при переходе через 2,5. Выпишем условие на решение с правой стороны уравнения с модулем.
x+3>=0 -> x>=-3
.
Итак решением могут быть значения, не меньше (-3). Раскроем модуль для отрицательного значения внутреннего модуля
|-(2x-5)-1|=x+3;
|-2x+4|=x+3.

Этот модуль также при раскрытии даст 2 уравнения
-2x+4=x+3 или 2x-4=x+3;
2x+x=4-3
или 2x-x=3+4;
3x=1; x=1/3
или x=7.
Значение x=7 отвергаем, поскольку мы искали решение на промежутке [-3;2,5]. Теперь раскрываем внутренний модуль для x>2,5. Получим уравнение с одним модулем
|2x-5-1|=x+3;
|2x-6|=x+3.
При раскрытии модуля получим следующие линейные уравнения
-2x+6=x+3 или 2x-6=x+3;
2x+x=6-3
или 2x-x=3+6;
3x=3; x=1
или x=9.
Первое значение x=1 не удовлетворяет условие x>2,5. Так что на этом интервале имеем один корень уравнения с модулем x=9, а всего их два (x=1/3).Подстановкой можно проверять правильность выполненных вычислений
Ответ: x=1/3; x=9.

 

Пример 4. Найти решения двойного модуля ||3x-1|-5|=2x-3.
Решение: Раскроем внутренний модуль уравнения
|3x-1|=0 <=> x=1/3.
Точка x=2,5 делит числовую ось на два интервала, а заданное уравнение на два случая. Записываем условие на решение, исходя из вида уравнения с правой стороны
2x-3>=0 -> x>=3/2=1,5.
Отсюда следует, что нас интересуют значения >=1,5. Таким образом модульное уравнения рассматриваем на двух интервалах
[1,5; 2,5], [2,5; +бесконечность).
Раскроем модуль при отрицательных значениях внутреннего модуля [1,5; 2,5]
|-(3x-1)-5|=2x-3;
|-3x-4|=2x-3.

Полученный модуль при раскрытии делится на 2 уравнения
-3x-4=2x-3 или 3x+4=2x-3;
2x+3x=-4+3
или 3x-2x=-3-4;
5x=-1; x=-1/5
или x=-7.
Оба значения не попадают в промежуток [1,5; 2,5], то есть не являются решениями уравнения с модулями. Далее раскроем модуль для x>2,5. Получим следующее уравнение
|3x-1-5|=2x-3;
|3x-6|=2x-3
.
Раскрывая модуль, получим 2 линейные уравнения
3x-6=2x-3 или –(3x-6)=2x-3;
3x-2x=-3+6
или 2x+3x=6+3;
x=3
или 5x=9; x=9/5=1,8.
Второе значение из найденных не соответствует условию x>2,5, его мы отвергаем.
Наконец имеем один корень уравнения с модулями x=3.
Выполняем проверку
||3*3-1|-5|=2*3-3 3=3.
Корень уравнения с модулем вычислено правильно.
Ответ: x=1/3; x=9.

Примеров с модулями где есть один или несколько вложенных модулей в интернете или методичке можно найти немало. Схема их вычислений ничем не отличается от приведенной выше. Для проверки знаний прошу решить следующие задачи.

Равнение на модуль в модуле:

  • ||3x-3|-2|=5-2x;
  • ||5x-3|-3|=3x-1;
  • ||2x-7|-4|=x-2;
  • ||5x-4|-8|=x+4;
  • ||2x-2|-3|=1;
  • ||x-2|-3|=4-x.
Ссылка на основную публикацию