Квадратные уравнения. Примеры решения

Задачи на квадратное уравнение изучаются и в школьной программе и в ВУЗах. Под ними понимают уравнения вида a*x^2 + b*x + c = 0,где x переменная, a,b,c – константы; a<>0. Задача состоит в отыскании корней уравнения.

Геометрический смысл квадратного уравнения

Графиком функции, которая представлена квадратным уравнением является парабола. Решения (корни) квадратного уравнения — это точки пересечения параболы с осью абсцисс (х). Из этого следует, что есть три возможных случая:
1) парабола не имеет точек пересечения с осью абсцисс. Это означает, что она находится в верхней плоскости с ветками вверх или нижней с ветками вниз. В таких случаях квадратное уравнение не имеет действительных корней (имеет два комплексных корня).

квадратное уравнение, функция, график

2) парабола имеет одну точку пересечения с осью Ох. Такую точку называют вершиной параболы, а квадратное уравнение в ней приобретает свое минимальное или максимальное значение. В этом случае квадратное уравнение имеет один действительный корень (или два одинаковых корня).

квадратное уравнение, функция, график

3) Последний случай на практике интересный больше — существует две точки пересечения параболы с осью абсцисс. Это означает, что существует два действительных корня уравнения.

квадратное уравнение, функция, график

На основе анализа коэффициентов при степенях переменных можно сделать интересные выводы о размещении параболы.

1) Если коэффициент а больше нуля то парабола направлена ветками вверх, если отрицательный — ветки параболы направлены вниз.

2) Если коэффициент b больше нуля то вершина параболы лежит в левой полуплоскости, если принимает отрицательное значение — то в правой.

Вывод формулы для решения квадратного уравнения

Перенесем константу с квадратного уравнения
квадратное уравнение, формула
за знак равенства, получим выражение

Умножим обе части на

Чтобы получить слева полный квадрат добавим в обеих частях b^2 и осуществим преобразование

Отсюда находим

Формула дискриминанта и корней квадратного уравнения

Дискриминантом называют значение подкоренного выражениядискриминант, формулаЕсли он положительный то уравнение имеет два действительных корня, вычисляемые по формуледействительные корни уравнения, формулаПри нулевом дискриминант квадратное уравнение имеет одно решение (два совпадающих корня), которые легко получить из приведенной выше формулы при D=0D=0, корниПри отрицательном дискриминант уравнения действительных корней нет. Однако исують решения квадратного уравнения в комплексной плоскости, и их значение вычисляют по формулекомплексные корни уравнения, формула

Теорема Виета

Рассмотрим два корня квадратного уравнения и построим на их основе квадратное уравнение.С записи легко следует сама теорема Виета: если имеем квадратное уравнение видато сумма его корней равна коэффициенту p, взятому с противоположным знаком, а произведение корней уравнения равен свободному слагаемому q. Формульная запись вышесказанного будет иметь видтеорема Виета, формулаЕсли в классическом уравнении константа а отлична от нуля, то нужно разделить на нее все уравнение, а затем применять теорему Виета.

Расписание квадратного уравнения на множители

Пусть поставлена задача: разложить квадратное уравнение на множители. Для его выполнения сначала решаем уравнение (находим корни). Далее, найденные корни подставляем в формулу разложения квадратного уравненияразложение квадратного уравнения на множители, формулаНа этом задача будет разрешен.

Задачи на квадратное уравнение

Задача 1. Найти корни квадратного уравнения

x^2-26x+120=0.

Решение: Запишем коэффициенты и подставим в формулу дискриминанта
дискриминант, вычисление
Корень из данного значения равен 14, его легко найти с калькулятором, или запомнить при частом использовании, однако для удобства, в конце статьи я Вам дам список квадратов чисел, которые часто могут встречаться при подобных задачах.
Найденное значение подставляем в формулу корней
корни уравнения, расчет
и получаем

 

Задача 2. Решить уравнение

2x2+x-3=0.

Решение: Имеем полное квадратное уравнение, выписываем коэффициенты и находим дискриминант

дискриминант, вычисление
По известным формулам находим корни квадратного уравнения
корни уравнения, вычисление

 

Задача 3. Решить уравнение

9x2-12x+4=0.

Решение: Имеем полное квадратное уравнение. Определяем дискриминант
дискриминант, расчет
Получили случай когда корни совпадают. Находим значения корней по формуле
корни уравнения, вычисление

 

Задача 4. Решить уравнение

x^2+x-6=0.

Решение: В случаях когда есть малые коэффициенты при х целесообразно применять теорему Виета. По ее условию получаем два уравнения

С второго условия получаем, что произведение должно быть равно -6. Это означает, что один из корней отрицателен. Имеем следующую возможную пару решений{-3;2}, {3;-2}. С учетом первого условия вторую пару решений отвергаем.
Корни уравнения равны

 

Задача 5. Найти длины сторон прямоугольника, если его периметр 18 см, а площадь 77 см2.

Решение: Половина периметра прямоугольника равна сумме соседних сторон. Обозначим х – большую сторону, тогда 18-x меньшая его сторона. Площадь прямоугольника равна произведению этих длин:
х(18-х)=77;
или
х2-18х+77=0.
Найдем дискриминант уравнения
дискриминант, вычисление
Вычисляем корни уравнения
корни уравнения, вычисление
Если х=11, то 18-х=7, наоборот тоже справедливо (если х=7 , то 21-х=9).

 

Задача 6. Разложить квадратное 10x2-11x+3=0 уравнения на множители.

Решение: Вычислим корни уравнения, для этого находим дискриминант
дискриминант, вычисление
Подставляем найденное значение в формулу корней и вычисляем

Применяем формулу разложения квадратного уравнения по корнями

Раскрыв скобки получим тождество.

Квадратное уравнение с параметром

Пример 1. При каких значениях параметра а, уравнение (а-3)х2+(3-а)х-1/4=0 имеет один корень?

Решение: Прямой подстановкой значения а=3 видим, что оно не имеет решения. Далее воспользуемся тем, что при нулевом дискриминанте уравнение имеет один корень кратности 2. Выпишем дискриминант
дискриминант, вычисление
упростим его и приравняем к нулю

Получили квадратное уравнение относительно параметра а, решение которого легко получить по теореме Виета. Сумма корней равна 7, а их произведение 12. Простым перебором устанавливаем, что числа 3,4 будут корнями уравнения. Поскольку решение а=3 мы уже отвергли в начале вычислений, то единственным правильным будет — а=4. Таким образом, при а=4 уравнение имеет один корень.

 

Пример 2. При каких значениях параметра а, уравнение а(а+3)х^2+(2а+6)х-3а-9=0 имеет более одного корня?

Решение:Рассмотрим сначала особые точки, ими будут значения а=0 и а=-3. При а=0 уравнение упростится до вида 6х-9=0; х=3/2 и будет один корень. При а= -3 получим тождество 0=0.
Вычислим дискриминант
дискриминант, вычисление
и найдем значения а при котором оно положительно

С первого условия получим а>3. Для второго находим дискриминант и корни уравнения
дискриминант, вычисление
корни уравнения, вычисление
Определим промежутки где функция принимает положительные значения. Подстановкой точки а=0 получим 3>0. Итак, за пределами промежутка (-3;1/3) функция отрицательная. Не стоит забывать о точке а=0, которую следует исключить, поскольку в ней исходное уравнение имеет один корень.
В результате получим два интервала, которые удовлетворяют условию задачи

Подобных задач на практике будет много, постарайтесь разобраться с заданиями самостоятельно и не забывайте учитывать условия, которые взаимоисключают друг друга. Хорошо изучите формулы для решения квадратных уравнений, они довольна часто нужны при вычислениях в разных задачах и науках.

Ссылка на основную публикацию