Корни и степени. Квадратный корень, кубический корень. — материалы для подготовки к ЕГЭ по Математике

Степенью называется выражение вида a^c.

Здесь a — основание степени, c — показатель степени.

Степень с натуральным показателем

Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

По определению, a^1=a.

Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.

a^2=a cdot a.

Возвести число в куб — значит умножить его само на себя три раза.

a^3=a cdot a cdot a.

Возвести число в натуральную степень n — значит умножить его само на себя n раз:

a^n= underbrace{a cdot a cdot a cdot a cdot ldots cdot a}_{displaystyle n}

Степень с целым показателем

Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

По определению,

a^0=1.

Это верно для aneq 0. Выражение 00 не определено.

Определим также, что такое степень с целым отрицательным показателем.

a^{-1}=genfrac{}{}{}{0}{1}{a}

a^{-2}=genfrac{}{}{}{0}{1}{a^2}

a^{-n}=genfrac{}{}{}{0}{1}{a^n}

Конечно, все это верно для aneq 0, поскольку на ноль делить нельзя.

Например,

5^{-2}=genfrac{}{}{}{0}{1}{5^2}

left( genfrac{}{}{}{0}{1}{2} right)^{-1}=2

left( genfrac{}{}{}{0}{2}{7} right)^{-1}=genfrac{}{}{}{0}{7}{2}

Заметим, что при возведении в минус первую степень дробь переворачивается.

left( genfrac{}{}{}{0}{5}{3} right)^{-2}=1 : left( genfrac{}{}{}{0}{5}{3} right)^{2}=left( genfrac{}{}{}{0}{3}{5} right)^{2}=genfrac{}{}{}{0}{9}{25}

Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби genfrac{}{}{}{0}{p}{q}, где p — целое, q — натуральное.

Здесь нам понадобится новое понятие — корень n-степени. Корни и степени — две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.

Арифметический квадратный корень из числа a — это такое неотрицательное число, квадрат которого равен a.

Согласно определению, left (sqrt{a} right )^2=a; , , sqrt{a}geq 0; , , ageq 0.

В школьной математике мы извлекаем корень только из неотрицательных чисел. Выражение  sqrt{a}  для нас сейчас имеет смысл только при ageq 0.

Выражение sqrt{a} всегда неотрицательно, т.е. sqrt{a}geq 0. Например, sqrt{25}=5.

Свойства арифметического квадратного корня:

sqrt{ab}=sqrt{a} cdot sqrt{b}

sqrt{genfrac{}{}{}{0}{a}{b}}=genfrac{}{}{}{0}{sqrt{a}}{sqrt{b}}

Кубический корень

Аналогично, кубический корень из a — это такое число, которое при возведении в третью степень дает число a.

left( sqrt[leftroot{3}scriptstyle 3]{a} right) ^3 = sqrt[leftroot{3}scriptstyle 3]{a} cdot sqrt[leftroot{3}scriptstyle 3]{a} cdot sqrt[leftroot{3}scriptstyle 3]{a}

Например, sqrt[leftroot{3}scriptstyle 3]{8} = 2, так как 2^3 = 2 cdot 2 cdot 2 = 8;

sqrt[leftroot{3}scriptstyle 3]{1000} = 10, так как 10^3 = 1000;

sqrt[leftroot{3}scriptstyle 3]{-genfrac{}{}{}{0}{1}{125}} = -genfrac{}{}{}{0}{1}{5}, так как left( -genfrac{}{}{}{0}{1}{5} right) ^3 = -genfrac{}{}{}{0}{1}{125}.

Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

Теперь мы можем дать определение корня n-ной степени для любого целого n.

Корень n-ной степени

Корень n-ной степени из числа a — это такое число, при возведении которого в n-ную степень получается число a.

Например,

sqrt[leftroot{3}scriptstyle 5]{32} = 2

sqrt[leftroot{3}scriptstyle 4]{81} = 3

sqrt[leftroot{3}scriptstyle 3]{mathstrut 0,001} = 0,1

Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.

Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

Итак, sqrt[leftroot{3}scriptstyle n]{a} — такое число, что left( sqrt[leftroot{3}scriptstyle n]{a} right) ^n = a. Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.

По определению,

a^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 2}} = sqrt{a}

a^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 3}} = sqrt[leftroot{3}scriptstyle 3]{a}

в общем случае a^n = sqrt[leftroot{3}scriptstyle n]{a}.

Сразу договоримся, что основание степени a больше 0.

Например,

25^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 2}} = 5

8^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 3}} = 2

81^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 4}} = 3

100000^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 5}} = 10

0,001^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 3}} = 0,1

Выражение a^{genfrac{}{}{}{3}{scriptstyle m}{scriptstyle n}} по определению равно sqrt[leftroot{3}scriptstyle n]{a^m}.

При этом также выполняется условие, что a больше 0.

a^{genfrac{}{}{}{3}{scriptstyle m}{scriptstyle n}} = sqrt[leftroot{3}scriptstyle n]{a^m} = left( sqrt[leftroot{3}scriptstyle n]{a} right) ^m

Например,

8^{genfrac{}{}{}{3}{scriptstyle 4}{scriptstyle 3}} = left( sqrt[leftroot{3} scriptstyle 3]{8} right) ^4 = 2^4 = 16

a^{genfrac{}{}{}{3}{scriptstyle 3}{scriptstyle 5}} = sqrt[leftroot{3} scriptstyle 5]{a^3} = left( sqrt[leftroot{3} scriptstyle n]{a} right) ^m

b^{-genfrac{}{}{}{3}{scriptstyle 2}{scriptstyle 3}} = genfrac{}{}{}{0}{1}{sqrt[leftroot{3} scriptstyle 3]{b^2}}

Запомним правила действий со степенями:

a^ma^n = a^{m+n} — при перемножении степеней показатели складываются

genfrac{}{}{}{0}{a^m}{a^n} = a^{m-n} — при делении степени на степень показатели вычитаются

left( a^m right) ^n = left( a^n right) ^m = a^{mn} — при возведении степени в степень показатели перемножаются

a^nb^n = left( ab right) ^n

genfrac{}{}{}{0}{a^n}{b^n} = left( genfrac{}{}{}{0}{a}{b} right) ^n

Ты нашел то, что искал? Поделись с друзьями!

Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:

1. genfrac{}{}{}{0}{sqrt{ mathstrut 2,8} cdot sqrt{ mathstrut 4,2}}{sqrt{ mathstrut 0,24}}= sqrt{ mathstrut genfrac{}{}{}{0}{2,8 cdot 4,2}{0,24}} = sqrt{ mathstrut genfrac{}{}{}{0}{28 cdot 42}{24}}=sqrt{ mathstrut genfrac{}{}{}{0}{7 cdot 4 cdot 7 cdot 6}{4 cdot 6}} =

= sqrt{ mathstrut 7 cdot 7} = 7

Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.

2. genfrac{}{}{}{0}{left( 2 sqrt{7} right) ^2}{14}= genfrac{}{}{}{0}{ 2^2 cdot left( sqrt{7} right) ^2}{14} = genfrac{}{}{}{0}{4 cdot 7}{14} = 2

3. genfrac{}{}{}{0}{ sqrt[leftroot{3} scriptstyle 9]{7} cdot sqrt[leftroot{3} scriptstyle 18]{7}}{sqrt[leftroot{3} scriptstyle 6]{7}}=genfrac{}{}{}{0}{7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 9}} cdot 7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 18}}}{7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6}}}=7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 9} + genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 18}- genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6}}= 7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6} - genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6}}=7^0=1

Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.

Ссылка на основную публикацию