Ромб и его свойства. Метод площадей. — материалы для подготовки к ЕГЭ по Математике

По определению, ромб — это параллелограмм, все стороны которого равны.

Свойства ромба:

  1. Диагонали ромба перпендикулярны.
  2. Диагонали ромба делят его углы пополам.

Ромб

Воспользуемся свойствами ромба для решения задач.

1. Найдите меньшую диагональ ромба, стороны которого равны 2, а острый угол равен 60^{circ}.

Рисунок к задаче 1

Проведите меньшую диагональ ромба и рассмотрите треугольник A mkern -2mu D mkern -2mu B. Поскольку AD = DB, а угол D mkern -2mu AB равен 60^{circ}, треугольник A mkern -2mu D mkern -2mu B — равносторонний. Следовательно, меньшая диагональ ромба равна 2.

1. Найдите высоту ромба, сторона которого равна 3, а острый угол равен 60?.

Рисунок к задаче 2

Один из подходов к решению задач по геометрии — метод площадей. Он состоит в том, что площадь фигуры выражается двумя разными способами, а затем из полученного уравнения находится неизвестная величина.

Пусть a — сторона ромба. Тогда

S = a^2cdot sin 60^{circ}= acdot h

Отсюда .

2. Диагонали ромба относятся как 3:4. Периметр ромба равен 200. Найдите высоту ромба.

Рисунок к задаче 3

Пусть диагонали ромба равны 6x и 8x.
Диагонали ромба перпендикулярны, значит, треугольник AO mkern -2mu B — прямоугольный.
По теореме Пифагора AB^2 = AO^2 + O mkern -2mu B^2
AB^2 = 9x^2 + 16x^2,
AB^2 = 25x^2,
Отсюда AB=5x.
Поскольку периметр равен 200,
5x cdot 4=200
x=10, AB=50, а диагонали ромба равны 60 и 80.

Нам надо найти высоту ромба.
Давайте запишем, чему равна площадь ромба. С одной стороны, S = acdot h. С другой стороны, площадь ромба складывается из площадей двух равных треугольников ABC и A mkern -2mu D mkern -2mu C, то есть равна 60 cdot 40 = 2400.
Отсюда h = S : a = 2400 : 50 = 48.

Ответ: 48.

Ссылка на основную публикацию