Точки разрыва функции первого и второго рода

Функция f(x) называется непрерывной в точке х = а если:
1) она определена в этой точке;
2) существует предел функции в этой точке

3) значение предела равно значению функции в точке х = а, т.е.

Если одно из условий нарушается то функция называется разрывной в точке х = а, а сама точка х = а называется точкой разрыва. Все элементарные функции являются непрерывными на интервалах определенности.

Классификация точек разрыва

Точка х0 называется точкой разрыва первого рода функции у = f(x) если существуют конечные односторонние пределы справа
предел справа
и слева
предел слева.

Если, кроме этого, выполняется хотя бы одно из условий
неустранимый разрыв первого рода
то функция в точке х = а имеет неустранимый разрыв первого рода.

Если пределы равны, однако функция не существует
устранимый разрыв первого рода
то имеем устранимый разрыв первого рода.

Точка х0 называется точкой разрыва второго рода функции у= f(x) если граница справа граница или слева предел не существует или бесконечна.

Скачком функции в точке разрыва х = х0 называется разность ее односторонних границ
скачок функции в точке
если они разные и не равны бесконечности.

При нахождении точек разрыва функции можно руководствоваться следующими правилами:

1) элементарная функция может иметь разрыв только в отдельных точках, но не может быть разрывной на определенном интервале.
2) элементарная функция может иметь разрыв в точке где она не определена при условии, что она будет определена хотя бы с одной стороны от этой точки.
3) Неэлементарные функция может иметь разрывы как в точках где она определена, так и в тех где она определена.
Например, если функция задана несколькими различными аналитическими выражениями (формулами) для различных интервалов, то на границе стыка может быть разрывной.

Рассмотрим несколько задач по данной теме.

Задача 1.
Найти точки разрыва функции
а) функция, пример

Решение:
Функция определена во всех точках кроме тех где знаменатель обращается в нуль x = 1, x = 1. Область определения функции следующая

Найдем односторонние пределы в точках разрыва
граница справа
предел слева
граница справа
предел слева

При нахождении односторонних границ подобного вида достаточно убедиться в знаке функции и в том, что знаменатель стремится к нулю. В результате получим границу равную бесконечности или минус бесконечности.

Поскольку в точках x = 1, x = -1 функция имеет бесконечные односторонние пределы, то аргументы являются точками разрыва второго рода. График функции приведен на рисунке ниже

график функции

——————————————————-

б) функция, пример

Решение:
Задача достаточно простая. В первую очередь находим нули знаменателя


Таким образом функция определена на всей действительной оси за исключением точек , которые являются точками разрыва. Вычислим односторонние пределы справа и слева
предел справа
граница слева
предел справа
предел слева

Пределы бесконечны поэтому, по определению, имеем точки разрыва второго рода.

график функции

Из графиков приведенных функций видим что для ряда из них отыскания точек разрыва сводится до нахождения вертикальных асимптот. Но бывают функции которые и без вертикальных асимптот имеют разрывы первого или второго рода.

——————————————————-

в) функция, пример

Решение:
Заданная функция непрерывна на всей числовой оси кроме точки x = -3. Вычислим односторонние границы в этой точке
предел справа
предел слева

Они различаются по значениям, однако есть конечными. Итак точка x = -3 является неустранимой точкой разрыва І рода.

график функции

——————————————————-

Задача 2.
Найти точки разрыва функции если они существуют. Вычислить скачок функции в точке разрыва. Построить график функции.

а) функция, пример

Решение:
Для заданной функции точка x = 2 является точкой разрыва. Найдем предел функции , чтобы определить характер разрыва
предел справа
предел слева

По определению, точка x = 2 является неустранимой точкой разрыва первого рода. Вычислим скачок функции при x=2

График функции на интервале который нас интересует приведен далее

график функции

——————————————————-

б) функция, пример

Решение:
Неэлементарная функция y (x) определена для всех положительных значений аргумента. Точки которые разбивают функцию на интервалы могут быть разрывами. Для проверки найдем соответствующие пределы
предел слева
предел справа

Поскольку предел функции в точке x = 2 равен значению функции в этой точке то функция — непрерывная.

Отсюда также следует, что для непрерывной функции скачок равен 6-6 = 0.

Исследуем на непрерывность вторую точку
предел слева
предел справа

По определению функция в точке x = 2 имеет неустранимый разрыв І рода.

Прыжок функции равен 29 — (- 3) = 31.

По условию задания построим график функции.

график функции

Из приведенного материала Вы должны научиться находить разрывы первого и второго рода, а также различать их. Для этого подобрано немного примеров, которые в полной мере раскрывают все важные вопросы темы. Все остальное сводится к нахождению простых односторонних пределов и не должно быть для Вас сложным.

Ссылка на основную публикацию