Как вычислить несобственный интеграл и выяснить сходимость

  • Понятие несобственного интеграла и его геометрический смысл
  • Несобственные интегралы с бесконечными пределами и их сходимость
  • Несобственные интегралы от неограниченных функций и их сходимость

Понятие несобственного интеграла и его геометрический смысл

Несобственные интегралы первого рода. По сути это тот же определённый интеграл,
но в случаях, когда интегралы имеют бесконечный верхний или нижний пределы интегрирования, или оба предела
интегрирования бесконечны.

Несобственные интегралы второго рода. По сути это тот же
определённый интеграл, но в случаях, когда интеграл берётся от неограниченных функций,
подынтегральная функция в конечном числе точек конечного отрезка интегрирования не имеет,
обращаясь в бесконечность.

Для сравнения. При введении понятия определённого интеграла предполагалось, что функция f(x) непрерывна на отрезке [a, b], а отрезок интегрирования является конечным, то есть ограничен числами, а не бесконечностью. Некоторые задачи приводят к необходимости отказаться от этих ограничений.
Так появляются несобственные интегралы.

Геометрический смысл несобственного интеграла выясняется довольно просто.
В случае, когда график функции y = f(x)
находится выше оси Ox, определённый интеграл
выражает площадь криволинейной трапеции, ограниченной кривой y = f(x),
осью абсцисс и ординатами x = a, x = b.
В свою очередь несобственный интеграл
выражает площадь неограниченной (бесконечной) криволинейной трапеции, заключённой между линиями
y = f(x) (на рисунке ниже — красного цвета), x = a
и осью абсцисс.

На чертеже показан геометрический смысл несобственного интеграла

Аналогичным образом определяются несобственные интегралы и для других бесконечных
интервалов:

,

.

Площадь бесконечной криволинейной трапеции может быть конечным числом и в этом случае несобственный
интеграл называется сходящимся. Площадь может быть и бесконечностью и в этом случае несобственный
интеграл называется расходящимся.

Использование предела интеграла вместо самого несобственного
интеграла.
Для того, чтобы вычислить несобственный интеграл, нужно использовать предел
определённого интеграла. Если этот предел существует и конечен (не равен бесконечности), то
несобственный интеграл называется сходящимся, а в противном случае — расходящимся. К чему стремится
переменная под знаком предела, зависит от того, имеем мы дело с несобственным интегралом первого рода
или второго рода. Узнаем об этом сейчас же.

Несобственные интегралы первого рода — с бесконечными пределами и их сходимость

Несобственные интегралы с бесконечным верхним пределом

Итак, запись несобственного интеграла как
отличается от обычного определённого интеграла тем, что верхний предел интегрирования бесконечен.

Определение. Несобственным интегралом с бесконечным верхним пределом
интегрирования от непрерывной функции f(x) на промежутке
от a до называется
предел интеграла этой функции с верхним пределом интегрирования b
и нижним пределом интегрирования a при условии, что верхний предел
интегрирования неограниченно растёт
, т.е.

.

Если этот предел существует и равен некоторому числу, а не бесконечности, то несобственный интеграл называется сходящимся, а число, которому равен предел, принимается за его значение. В противном случае несобственный интеграл называется расходящимся и ему не приписывается никакого значения.

Пример 1. Вычислить несобственный интеграл (если он сходится).

Решение. На основании определения несобственного интеграла находим

Так как предел существует и равен 1, то и данный несобственный интеграл сходится и равен 1.

В следующем примере подынтегральная функция почти как в примере 1, только степень
икса — не двойка, а буква альфа, а задача состоит в исследовании несобственного интеграла на сходимость.
То есть предстоит ответить на вопрос: при каких значениях альфы данный несобственный интеграл сходится,
а при каких расходится?

Пример 2. Исследовать на сходимость несобственный интеграл
(нижний предел интегрирования больше нуля).

Решение. Предположим сначала, что , тогда

В полученном выражении перейдём к пределу при :

Нетрудно видеть, что предел в правой части существует и равен нулю, когда
, то есть
, и не существует, когда
, то есть
.

В первом случае, то есть при
имеет место .
Если , то
и
не существует.

Вывод нашего исследования следующий: данный несобственный интеграл
сходится
при и
расходится при .

Применяя к изучаемому виду несобственного интеграла формулу Ньютона-Лейбница ,
можно вывести следующую очень похожую на неё формулу:

.

Это обобщённая формула Ньютона-Лейбница.

Пример 3. Вычислить несобственный интеграл (если он сходится).

Решение. С помощью метода замены переменной можно получить очень полезную формулу:

Доказывать эту формулу нет необходимости, но запомнить стоит — пригодится. Итак, применяя эту формулу для нахождения первообразной получим

Итак, несобственный интеграл сходится и равен 1.

Пример 4. Вычислить несобственный интеграл (если он сходится).

Решение. Находим

.

Но предел не существует, т. е. данный несобственный интеграл расходится.

Пример 5. Вычислить несобственный интеграл (если он сходится).

Решение. Подынтегральная функция непрерывна в каждой точке, поэтому определённый
интеграл от неё на отрезке [0, b] существует
при всяком b. Находим этот интеграл:

.

Находим предел этого интеграла:

.

По определению, значение данного несобственного интеграла:

.

Несобственные интегралы с бесконечным нижним пределом

Аналогично определяется несобственный интеграл от непрерывной функции с бесконечным нижним пределом интегрирования, обозначаемый символом , а именно

.

Если этот предел существует (и, значит, конечен, то есть, равен некоторому числу, а не бесконечности), то данный несобственный интеграл называется сходящимся.

Пример 6. Вычислить несобственный интеграл
с бесконечным
нижним пределом(если он сходится).

Решение. Находим предел данного интеграла:

Вывод: данный несобственный интеграл сходится, а его значение равно -1/2.

Несобственные интегралы с двумя бесконечными пределами

Несобственный интеграл с двумя бесконечными пределами интегрирования, обозначаемый символом , нужно
предварительно представить в виде суммы двух несобственных интегралов, один из которых с конечным верхним
пределом интегрирования, другой — с конечным нижним пределом интегрирования, т.е.

.

По определению,

,

причём этот несобственный интеграл считается сходящимся, если оба предела существуют, когда a и b независимо друг от друга неограниченно возрастают по абсолютной величине.

Пример 7. Вычислить несобственный интеграл
с двумя бесконечными пределами (если он сходится).

Решение. На основании определения несобственного интеграла с двумя бесконечными
пределами представляем данный интеграл как сумму двух несобственных интегралов:

.

Преобразуем подынтегральное выражение к форме ,
с помощью выделения полного квадрата:

По формуле
находим:

(Эта формула, которой мы воспользовались, а также другие формулы, пригодные для интегрирования
дробей, приведены в уроке Интегрирование некоторых рациональных дробей и иррациональностей).

Предел этого интеграла существует:

Второй интеграл, составляющий сумму, выражающую исходный интеграл:

Предел этого интеграла также существует:

.

Находим сумму двух интегралов, являющуюся и значением исходного несобственного
интеграла с двумя бесконечными пределами:

.

Несобственные интегралы второго рода — от неограниченных функций и их сходимость

Пусть функция f(x) задана на
отрезке от a до b
и неограниченна на нём. Предположим, что функция обращается в бесконечность в точке b,
в то время как во всех остальных точках отрезка она непрерывна.

Определение. Несобственным интегралом функции f(x)
на отрезке от a до b
называется предел интеграла этой функции с верхним пределом интегрирования c,
если при стремлении c к b
функция неограниченно возрастает, а в точке x = b
функция не определена
, т.е.

.

Если этот предел существует, то несобственный интеграл второго рода называется
сходящимся, в противном случае — расходящимся.

Используя формулу Ньютона-Лейбница, выводим:

.

Это также обобщённая формула Ньютона-Лейбница. Именно она применяется в решении задач на вычисление несобственных интегралов от неограниченных функций.

Пример 8. Вычислить несобственный интеграл (если он сходится).

Решение. Подынтегральная функция при неограниченно возрастает, а в точке x = 0 функция не определена, то есть, не существует. Применяем обобщённую формулу Ньютона-Лейбница:

(так как при x = 0 первообразная непрерывна). Вывод: данный несобственный интеграл сходится и равен -3/2.

Пример 9. Вычислить несобственный интеграл (если он сходится).

Решение. Подынтегральная функция непрерывна в каждой точке полуотрезка
[0, 1]. В точке x = 1
функция обращается в бесконечность. Если взять ,
то на [0, c] подынтегральная функция непрерывна и,
следовательно, существует интеграл.

.

Найдём предел этого интеграла:

Результат предыдущих действий: несобственный интеграл сходится и его значение мы нашли.

Пример 10. Исследовать на сходимость несобственный интеграл
(верхний предел интегрирования больше нижнего).

Решение. Подынтегральная функция обращается в бесконечность при
x = b, в остальных точках она непрерывна.
Предположим сначала, что ,
тогда для :

В полученном выражении перейдём к пределу при :

Нетрудно видеть, что предел в правой части существует и равен нулю, когда
, то есть
, и не существует,
когда , то есть
.

В первом случае, то есть при

.

Если , то

.

не существует.

Вывод нашего исследования следующий: данный несобственный интеграл
сходится
при и
расходится при .

Поделиться с друзьями

Ссылка на основную публикацию