Что такое производная

  • Понятие производной
  • Физический смысл производной
  • Геометрический смысл производной

Понятие производной

Производная — главнейшее понятие математического анализа. Она характеризует изменение функции аргумента x в некоторой точке. При этом и сама производная является функцией от аргумента x

Производной функции в точке называется предел (если он существует и конечен) отношения приращения функции к приращению аргумента при условии, что последнее стремится к нулю.

То есть,

         (1)

Наиболее употребительны следующие обозначения производной:

Пример 1. Пользуясь определением производной, найти производную функции

.

Решение. Из определения производной вытекает следующая схема её вычисления.

Дадим аргументу приращение (дельта) и найдём приращение функции:

.

Найдём отношение приращения функции к приращению аргумента:

Вычислим предел этого отношения при условии, что приращение аргумента стремится к нулю,
то есть требуемую в условии задачи производную:

Физический смысл производной

К понятию производной привело изучение Галилео Галилеем закона свободного падения тел, а в
более широком смысле — задачи о мгновенной скорости неравномерного прямолинейного движения точки.

Пусть камешек поднят и затем из состояния покоя отпущен. Путь s, проходимый
за время t, является функцией времени, то есть. s = s(t). Если задан закон движения точки,
то можно определить среднюю скорость за любой промежуток времени. Пусть в момент времени
камешек находился в положении A, а в момент
в положении B. За промежуток времени
(от t до )
точка прошла путь .
Поэтому средняя скорость движения за этот промежуток времени, которую обзначим через ,
составляет

.

Однако движение свободно падающего тела явно неравномерное. Скорость v падения
постоянно возрастает. И средней скорости уже недостаточно для характеристики быстроты движения на различных участках пути.
Такая характеристика тем точнее, чем меньше промежуток времени .
Поэтому вводится следующее понятие: мгновенной скоростью прямолинейного движения (или скоростью в данный момент времени t)
называется предел средней скорости при :

(при условии, что этот предел существует и конечен).

Так выясняется, что мгновенная скорость есть предел отношения приращения функции s(t)
к приращению аргумента t при
Это и есть производная, которая в общем виде записывается так:.

.

Решение обозначенной задачи представляет собой физический смысл производной. Итак, производной функции y=f(x)
в точке x называется предел (если он существует и конечен) приращения функции к приращению аргумента
при условии, что последнее стремится к нулю.

Пример 2. Найти производную функции

Решение. Из определения производной вытекает следующая схема для её вычисления.

Шаг 1. Дадим аргументу приращение и найдём

Шаг 2. Найдём приращение функции:

Шаг 3. Найдём отношение приращения функции к приращению аргумента:

Шаг 4. Вычислим предел этого отношения при , то есть производную:

Геометрический смысл производной

Пусть функция определена на интервале и пусть точка М на графике функции соответствует значению аргумента , а точка Р – значению . Проведём через точки М и Р прямую и назовём её секущей. Обозначим через угол между секущей и осью . Очевидно, что этот угол зависит от .

Если существует

то прямую с угловым коэффициентом

проходящую через точку , называют предельным положением секущей МР при (или при ).

Касательной к графику функции в точке М называется предельное положение секущей МР при , или, что то же при .

Из определения следует, что для существования касательной достаточно, чтобы существовал предел

,

причём предел равен углу наклона касательной к оси .

Теперь дадим точное определение касательной.

Касательной к графику функции в точке называется прямая, проходящая через точку и имеющая угловой коэффициент , т.е. прямая, уравнение которой

Из этого определения следует, что производная функции равна угловому коэффициенту касательной к графику этой функции в точке с абсциссой x. В этом состоит геометрический смысл производной:

где — угол наклона касательной к оси абсцисс, т.е. угловой коэффициент касательной.

Пример 3. Найти производную функции и значение этой производной при .

Решение. Воспользуемся схемой, приведённой в примере 1.

Шаг 1.

Шаг 2.

Шаг 3.

Шаг 4.

Выражение под знаком предела не определено при (неопределённость вида 0/0), поэтому преобразуем его, избавившись от иррациональности в числителе и затем сократив дробь:

Найдём значение производной при :

  • Что такое производная
  • Найти производную: алгоритм и примеры решений
  • Производные произведения и частного функций
  • Производная суммы дробей со степенями и корнями
  • Производные простых тригонометрических функций
  • Производная сложной функции
  • Производная логарифмической функции
  • Дифференциал функции
  • Дифференциал сложной функции, инвариантность формы дифференциала
  • Уравнение касательной и уравнение нормали к графику функции
  • Правило Лопиталя
  • Частные производные
Ссылка на основную публикацию